本实例中我们来加深对51单片机定时器/计数器的理解,及定时器定时功能的使用方法,利用定时功能来实现一个简易秒表,该秒表通过两位数码管显示0~99秒的计时,并且可以通过按键实现秒表的启动、停止、清零。
图1 简易秒表电路
1.2. 设计思路之所以说是简易秒表,因为我们平时所见到的秒表不仅有秒时间的变化,还有毫秒的变化,如下面的动图所示。而我们实现的秒表只有秒数的变化,没有毫秒级的变化。
图2 更精确的秒表
本例的设计思路是使用一个按键来控制秒表的启动、停止、清零功能。具体实现过程是:第一次按下按键,秒表开始工作,两位数码管从00开始显示,每秒显示的数字加1,一直加到99,然后再从00开始显示;当第二次按下按键,数码管的显示停止,同时数码管正在显示的数字不再变化;第三次按下按键,数码管的数字清零,变为显示00。
1.3. 基础知识本例设计的基础知识有定时器的工作原理;数码管的显示原理,按键检测识别原理,这些我们在之前已经学习过了。
本例的另一个重点是程序代码比之前的代码复杂了,代码中涉及了端口位定义,位变量定义,数组的定义及初始化,函数的定义,C语言中switch case语句的使用等等;我们将在代码部分一一解释。
1.4. 电路设计
本实例的电路图如图1所示。单片机的P0和P1口接两个共阳极数码管,用于秒表显示。按键连接到P3.4端口,P3.4口在按键未按下时处于高电平,按键按下后,变为低电平。
1.5. 程序设计本实例的程序代码如下所示。
这个程序代码中有很多知识点,我们来学习一下。
1、头文件包含#include <AT89x52.h>
这个语句的作用是将预定义好的51单片机的端口定义、寄存器定义等各种信息包含进来。例如我们在程序中用到的P3^4,EA,TH0等,我们之所以可以直接使用这些名称,就是因为在这个头文件中已经帮我们定义好了。如果程序中没有这条头文件包含的语句,则凡是用到这些名称的语句都会报错。
图3 51单片机头文件部分内容
2、位定义
在程序中有这些语句sbit K1 = P3^4; bit Key_State; 这两个都是位定义语句,只不过两者还有些区别,sbit是定义端口的某一位,而bit则定义一个位数据,这个位数据只有两个值0或1。
3、数组的定义和初始化
看一下这个语句unsigned char DSY_CODE[]={
0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90
}
这个语句实现的功能就是在定义的同时初始化了数组中各元素的值。细心的人可能会发现,这个数组中元素个数没有定义,这是C语言的一个特色:数组定义的同时初始化的话,如果不定义数组元素的个数,那么默认按照初始化的值的个数设置。
再看这个unsigned char ViewData[2]; 只是定义了数组,没有初始化数组元素的值,所以必须指明数组元素的个数,并且如果程序中要对这个数组赋值的话,只能一个一个的赋值,ViewData[0]=0xC0;ViewData[1]=0xC0;而不能直接这样赋值ViewData[2]={0xc0,0xc0};这就是数组定义的同时初始化和数组只定义不初始化时的区别。
4、全局变量
全局变量必须在所有函数之前定义,并且全局变量在程序运行期间,它的值是不变的,除非程序中人为改变了这个值。
5、函数的定义和声明
函数可以在调用之前先声明,然后再调用它的函数之后定义,也可以在声明的同时定义,本例中就是在声明的同时定义。函数的声明只要一句话,例如void Key_Event_Handle(void);而函数的定义是指将函数要实现的功能写出来,具体说就是把函数的内容补充完善。
6、switch case语句
switch case语句属于判断语句,switch后面括号中的变量就是判断条件,这个判断条件只能是整数,不能是小数。每个case语句后面的功能执行完后,最好加一个break语句,以跳出整个判断结构,否则只要下面的case条件满足,就一直执行,这样容易造成混乱。
关于51单片机C语言编程的一些知识,今天就先说到这里,后面我们会有更多了解。
1.6. 实例仿真编译程序后,将生成的hex文件载入proteus电路的单片机中,开始仿真,仿真时随时按下按键(要默记按键是第几次按下),观察两位数码管显示数字的变化,充分理解该实例的功能实现。
下面视频是本实例的仿真过程。
1.7. 总结
通过本实例的学习,我们更加熟悉了51单片机定时器/计数器的定时功能,同时也更多的了解了51单片机C语言程序设计中的端口位定义,位变量定义,数组的定义及初始化,函数的定义,C语言中switch case语句的使用等等编程方法,这对我们继续深入掌握编程知识很有用处。