可导与连续的关系可导与可微的关系,连续与可导与可微关系是什么

首页 > 时尚 > 作者:YD1662025-06-21 00:46:14

可导与连续的关系可导与可微的关系,连续与可导与可微关系是什么(1)

可微=>可导=>连续=>可积,在一元函数中,可导与可微等价。

函数在x0点连续的充要条件为f(x0)=lim(x→x0)f(x),即函数在此点函数值存在,并且等于此点的极限值

若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。可导的充要条件是此函数在此点必须连续,并且左导数等于右倒数。

可微在一元函数中与可导等价,在多元函数中,各变量在此点的偏导数存在为其必要条件,其充要条件还要加上在此函数所表示的广义面中在此点领域内不含有“洞”存在,可含有有限个断点。

函数可积只有充分条件为:

①函数在区间上连续

②在区间上不连续,但只存在有限个第一类间断点(跳跃间断点,可去间断点)上述条件实际上为黎曼可积条件,可以放宽,所以只是充分条件。

可导和可微,是一样的。

可导必连续,连续不一定可导。

连续必可积,可积不一定连续。

可积必有界,可界不一定可积。

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.