1.简介
1.1. 定义
固态电池指使用固态电解质代替电解液的锂电池。根据固态电解质用量的关系,可以将其细分为半固态电池和全固态电池两大类:
1) 半固态电池:电解质采用固液混合形态,电池中液体(电解液)质量占比5-10%左右。本质上是液态锂电池和全固态电池的折中方案。
2)全固态电池:完全使用固态电解质代替电解液。
一般将“电池内液体质量占比10%”作为半固态电池和液态电池的分界线。
1.2. 驱动因素
从液态电池向固态电池的转化,从长期来看是电池技术发展的大趋势。推动这一转化的原因主要有安全性、能量密度两点。我们认为车企采用固态电池替代液态电池,安全性为短期驱动因素,能量密度为中长期驱动因素。
安全性主要包括热稳定性和锂枝晶两大问题。1)热稳定性:即隔膜熔化导致正负极短路的问题。液态锂电池隔膜材料PP/PE聚合物的玻璃化转变温度约为140-160度,经过涂覆处理后可提升至160-180度。但超过此温度后,聚合物会转化为流动态,导致正负极直接短路。2)锂枝晶:即锂枝晶刺穿隔膜导致电池短路起火的问题。锂离子在充放电过程中会部分还原,沉积在极片上形成锂枝晶,锂枝晶生长到一定程度将刺穿隔膜,导致电池短路起火。
短期来看,安全性是车厂采用半固态/固态电池的主要考量因素。液态锂电池由于短路起火概率较高,在威胁车内乘客安全的同时,也增加了车辆因安全问题召回的概率,为车厂带来额外成本负担。
能量密度指固态电池通过引入新型负极材料(硅基负极、金属锂负极)及正极材料(镍锰氧LNMO,层状富锂锰等)实现能量密度提高。目前应用高镍三元 硅碳负极的液态电池(例如4680)能量密度约为300wh/kg,但固态电池在应用新型材料后,能量密度可提升至500wh/kg以上。但新型材料的电压较高,超出电解液适配的极限,因此必须配合固态电解质才能应用于电池中。
短期来看,能量密度并非车厂的主要考量。目前高能量密度的811/NCA三元正极由于安全性较差、原料价格高等原因,尚未占据主导地位,因此液态电池的平均能量密度仍有提升空间。且目前金属锂负极等新材料仍有较多技术问题尚未解决,我们预计第一代半固态/固态动力电池仍将采用现有的三元 石墨(或硅碳)材料体系。
需要注意的是,安全性和能量密度之间也存在联系,例如应用金属锂负极后,锂枝晶问题更加严重,对电池安全性也提出更高的要求。
1.3. 技术迭代路径
从液态电池到固态电池的技术迭代路径大致遵循“固态电解质-->新型负极-->新型正极”的顺序,如下表所示:
Step 1: 引入固态电解质,保留少量电解液,正负极仍为三元 石墨(或硅碳),但可能采用负极预锂化技术提高能量密度。
Step 2: 用固态电解质完全取代电解液,正负极仍为三元 石墨(或硅碳),但可能采用负极预锂化技术提高能量密度。
Step 3: 在Step 2的基础上,用金属锂取代石墨负极,正极仍为三元材料。
Step 4: 在Step 3的基础上,用硫化物/层状碳/层状富锂锰等材料取代正极。
表:固态电池技术迭代路径
图:不同阶段固态电池技术示意
2. 和液态电池的比较
2.1. 结构方面
和液态电池相比,半固态/固态电池最大的特点在于引入了固态电解质。以取代现有的电解液 隔膜的电池构成。但半固态电池和固态电池的结构又有所不同:
半固态电池:保留部分电解液和隔膜结构。半固态电池出于提高导电能力的需求,在加入固态电解质的同时,仍保留了少量电解液,也因此需要隔膜作为分隔正负极的结构。另外根据不同的技术路线,固态电解质也有颗粒状和膜状等多种结构。
全固态电池:不保留电解液,隔膜不确定。在全固态电池中,电解液将被固态电解质完全替代。隔膜是否被替代,要视不同技术路线而定。在一些固态电池技术方案中,隔膜被保留作为支撑极片的架构;而另外一些方案中,隔膜则被完全取消。
图:固态、液态锂电池对比
半固态、固态电池对电池各类主材及辅材需求的影响如下:
1.电解液:短期需求将有所抑制,长期将被显著替代,更换为固态电解质。短期来看,我们预计半固态电池商业化应用的概率更大,因此电解液仍将有一定的应用;但长期(5年以上)随着全固态电池的渗透率提升,电解液将被显著替代。
2.隔膜:短期不会被替代,长期视主流技术路线而定。短期来看,在半固态电池率先产业化的前提下,隔膜仍是电池至关重要的核心材料。长期来看,随着全固态电池的普及,隔膜是否被取代要看哪种技术路线占优。
3.三元/石墨正负极:短期替代效应不大,长期将被取代。现有的三元/石墨正负极结构可兼容固液混合/固态电解质结构,鉴于正负极新型材料应用仍需时间,三元/石墨正负极仍将有广泛应用。长期来看,其将被金属锂/层状富锂锰等取代。
4.结构件:固态电池封装技术以软包为主,方形、圆柱构型较为少见,对结构件的需求不大,但会增加铝塑膜的需求。
5.铜箔、铝箔:和正负极的更新换代保持一致。
6.导电剂等辅材:会更新换代,但不会被替代。
2.2. 优劣势
2.2.1. 优势:
1.能量密度:固态电池能量密度相较液态电池是否有提升,要视不同的正负极材料而定。
1)我们预计第一代固态电池由于继续采用传统三元/石墨正负极材料,其能量密度相较液态电池提升并不显著。由于固体密度大于液体,若用同等体积的固态电解质取代电解液,电池的重量将会增加,导致以重量计算的电池能量密度(wh/kg)下降。而短期内,由于金属锂等材料实用化仍面临较大瓶颈,首代固态电池仍会采用三元/石墨正负极材料。虽然可以配合负极预锂化等技术提升一定的能量密度,但和电解质增重后的能量密度降低相对冲,总体能量密度提升幅度较小。2)后续固态电池由于采用新型正负极材料,能量密度将有显著提升。随着金属锂、层状富锂锰、硫化物正极等新型材料的应用,固态电池的能量密度将显著突破液态电池300wh/kg能量密度的上限。
2.安全性:半固态/全固态电池采用固态电解质,安全性相较液态电池显著提升,其中全固态电池的安全性更高。
1)锂枝晶方面,固态电解质可抑制锂枝晶生长速度,且锂枝晶较难穿透固态电解质造成正负极短路;2)可燃性方面,固态电解质的燃点高于电解液,电池不易起火;3)热稳定性方面,不同成分的固态电解质耐热极限差异较大(400度-1800度不等),但均显著高于液态电池隔膜的耐热极限(160度)。半固态电池由于保留少量电解液,安全性稍差于全固态电池,但仍旧大幅优于液态电池。
2.2.2. 劣势:
性能:全固态电池由于固态电解质导电率差,电极和电解质界面接触不良,使得内阻较大,循环性能及倍率性能差。半固态电池由于保留电解液,上述性能相较固态电池稍好一些。1)导电率上,现有的固态电解质导电率(即锂离子迁移速率)相较液态电解质低1-2个数量级,电导率低导致电池内阻大。2)界面接触上,固态电池面临固-固界面接触难题:电极材料会随着充放电过程膨胀及收缩,液态电池由于电极材料浸润在电解液中,二者可长期保持稳定接触;而固态电池随着正负极膨胀收缩,容易和电解质颗粒之间产生缝隙,导致界面接触变差,长期充电循环会加大固态电解质破裂或和电极分离的可能。半固态电池由于保留少量电解液,可以部分弥补导电率低、界面接触差的问题。
其他技术问题:锂枝晶可能会折断,导致“死锂”情况发生,降低电池容量;金属锂循环过程中出现多孔,体积无限膨胀。
成本:电解质成本显著高于现有电解液,显著提高半固态/固态电池成本。【核心在于找出半固态电解质的成本】
3. 技术路线
3.1. 电解质
按照电解质化学成分划分,固态电池可分为聚合物、氧化物、硫化物电解质三种类型。
1)聚合物电解质:易加工,耐受高电压,制备成本低,技术较成熟,已实现小规模量产,产品性能与电解液类似。但离子电导率和循环寿命有待提高,界面电阻高,容易脆裂。
2)氧化物电解质:导电率高于聚合物,耐受高电压,但界面电阻高,固-固接触会持续变差,且对空气较敏感。布局企业包括清陶、卫蓝、辉能、赣锋、宁德等。
3)硫化物电解质:导电率和能量密度最高,接触性好,且容易加工。但温度范围较窄(60-85°C)。布局企业包括松下、三星;宁德、清陶,SolidPower等。
图:全固态电池电解质技术路线