但是在这一段时期,各种三角函数表仍然是给定半径情况下(半)弧长与(半)弦长的对应关系,且在形式上大都以表格为主,角的范围也仅仅局限在[0°,180°]内,没有真正形成抽象的“三角函数”。
4.弧度制的出现与确立
时间来到了14世纪,随着文艺复兴在欧洲兴起,数学与三角学也重新蓬勃发展起来。
哥白尼的学生,印度数学家利提克斯在学习古希腊数学时发现在给定半径的圆中角和弧长实际上是可以一一对应的。因此他突破性地改变了正弦的定义,在他之前,正弦的定义是:
利提克斯将其改成了:
这真是一个非常伟大的突破!因为这样一来三角学中的各种(三角比)定义就不再依赖于圆而可以仅在一个直角三角形中进行讨论了。也正是因为如此,角成为了三角函数的自变量,之后弧度制便逐渐登上了历史舞台。