开发工具: python 3.9
数据免费调用,无需注册。
安装股票数据调用库
pip install baostock
获取日线数据代码
import baostock as bs
import pandas as pd
#### 登陆系统 ####
lg = bs.login()
# 显示登陆返回信息
print('login respond error_code:' lg.error_code)
print('login respond error_msg:' lg.error_msg)
#### 获取历史K线数据 ####
# 详细指标参数,参见“历史行情指标参数”章节
rs = bs.query_history_k_data_plus("sh.600000",
"date,code,open,high,low,close,preclose,volume,amount,adjustflag,turn,tradestatus,pctChg,peTTM,pbMRQ,psTTM,pcfNcfTTM,isST",
start_date='2017-06-01', end_date='2017-12-31',
frequency="d", adjustflag="3") #frequency="d"取日k线,adjustflag="3"默认不复权
print('query_history_k_data_plus respond error_code:' rs.error_code)
print('query_history_k_data_plus respond error_msg:' rs.error_msg)
#### 打印结果集 ####
data_list = []
while (rs.error_code == '0') & rs.next():
# 获取一条记录,将记录合并在一起
data_list.append(rs.get_row_data())
result = pd.DataFrame(data_list, columns=rs.fields)
#### 结果集输出到csv文件 ####
result.to_csv("D:/history_k_data.csv", encoding="gbk", index=False)
print(result)
#### 登出系统 ####
bs.logout()
运行后如图:
字段对应的说明如下图:
参数说明:
- code:股票代码,sh或sz. 6位数字代码,或者指数代码,如:sh.601398。sh:上海;sz:深圳。此参数不可为空;
- fields:指示简称,支持多指标输入,以半角逗号分隔,填写内容作为返回类型的列。详细指标列表见历史行情指标参数章节,日线与分钟线参数不同。此参数不可为空;
- start:开始日期(包含),格式“YYYY-MM-DD”,为空时取2015-01-01;
- end:结束日期(包含),格式“YYYY-MM-DD”,为空时取最近一个交易日;
- frequency:数据类型,默认为d,日k线;d=日k线、w=周、m=月、5=5分钟、15=15分钟、30=30分钟、60=60分钟k线数据,不区分大小写;指数没有分钟线数据;周线每周最后一个交易日才可以获取,月线每月最后一个交易日才可以获取。
- adjustflag:复权类型,默认不复权:3;1:后复权;2:前复权。已支持分钟线、日线、周线、月线前后复权。
获取分钟线代码
import baostock as bs
import pandas as pd
#### 登陆系统 ####
lg = bs.login()
# 显示登陆返回信息
print('login respond error_code:' lg.error_code)
print('login respond error_msg:' lg.error_msg)
#### 获取沪深A股历史K线数据 ####
# 详细指标参数,参见“历史行情指标参数”章节;“分钟线”参数与“日线”参数不同。“分钟线”不包含指数。
# 分钟线指标:date,time,code,open,high,low,close,volume,amount,adjustflag
# 周月线指标:date,code,open,high,low,close,volume,amount,adjustflag,turn,pctChg
rs = bs.query_history_k_data_plus("sh.600000",
"date,time,code,open,high,low,close,volume,amount,adjustflag",
start_date='2017-07-01', end_date='2017-07-31',
frequency="5", adjustflag="3")
print('query_history_k_data_plus respond error_code:' rs.error_code)
print('query_history_k_data_plus respond error_msg:' rs.error_msg)
#### 打印结果集 ####
data_list = []
while (rs.error_code == '0') & rs.next():
# 获取一条记录,将记录合并在一起
data_list.append(rs.get_row_data())
result = pd.DataFrame(data_list, columns=rs.fields)
#### 结果集输出到csv文件 ####
result.to_csv("D:\\history_A_stock_k_data.csv", index=False)
print(result)
#### 登出系统 ####
bs.logout()