2.2氨稀释风量低
氨气喷入SCR反应器之前,为保证氨空比低于8%,要充分利用空气进行稀释。如果氨稀释风量低,会影响喷氨量的增加。SCR反应器入口NOx质量浓度高时,为保证烟囱入口NOx质量浓度不超标,增加喷氨量,由于氨空比的限制,喷氨增加量就会受到限制。氨稀释风体积流量降低到一定程度时,喷氨量不能保证脱硝的全负荷运行。在氧量充足的条件下,热力型NOx生成主要受炉内温度制约,燃料型NOx则取决于HCN、NH3等中间产物的生成率,而生成率也是受炉内温度的制约。为查找该公司氨稀释风体积流量低于设计值(9000m3/h)的原因,机组运行中分别对风机入口滤网、风机性能、风机出口自动切换挡板、氨稀释风管道等进行排查,均未发现明显异常。
机组停运后,经对氨稀释风系统设备及管道排查后发现:
(1)氨空混合器后的母管内积灰严重,圆形的分配器的截面积堵塞近50%;
(2)喷氨支管流量缩孔堵塞,部分被积灰堵死。
待积灰清除后,氨稀释风量大大增加。如6号锅炉在清理积灰前氨稀释风体积流量为6448m3/h,积灰清理后氨稀释风体积流量增加到9493m3/h,且已超过变送器量程。由此可知,氨空混合器后的氨气分配器和喷氨支管流量缩孔堵塞是造成氨稀释风量低的主要原因。
为防止类似故障发生,采取了如下防堵措施:
(1)将氨空混合器后的母管和喷氨支管流量缩孔列入机组每次检修的必检项目;
(2)提高氨气纯度,不定期抽检,减少氨气的杂质携带;
(3)在稀释风机入口加设了一道致密的滤网,并由检修人员定期清灰。自防范措施实施后,2台氨稀释风机运行时氨稀释风体积流量均能保持在9000m3/h以上。
2.3喷氨自动控制效果差
鉴于喷氨控制系统的大滞后特性,SCR脱硝喷氨自动控制系统不能简单地将烟囱入口NOx质量浓度作为被调量,否则喷氨自动投入后系统始终在反复振荡。负荷变化、燃烧状况变化也会造成SCR反应器入口NOx质量浓度大幅变化。SCR反应器入口NOx质量浓度变化引起SCR脱硝喷氨调节阀无法立即动作,喷氨调节阀过调量较大,最终造成烟囱入口NOx质量浓度时有超标情况出现。
合理的SCR喷氨调节阀控制逻辑应以烟囱入口NOx质量浓度为控制目标,以SCR反应器出口NOx质量浓度为中间控制对象,以喷氨量为主要调节回路,同时增加调节前馈。基于此,将原喷氨自动控制逻辑修改为带前馈的回路控制系统(见图5)。锅炉总风量经过函数f4(x)得出喷氨量前馈值。SCR出口和烟囱入口NOx质量浓度实际值经过微分函数f1(x)、f2(x)、f3(x)得出烟囱入口NOx质量浓度预测值,该预测值再和烟囱入口NOx设定值相比较,利用PID调节器1得出SCR反应器出口NOx质量浓度的中间值,SCR反应器出口NOx质量浓度的中间值再和SCR反应器出口NOx质量浓度实际值相比较,利用PID调节器2得出喷氨量。
该喷氨量与喷氨量前馈值之和得出喷氨量设定值。喷氨量设定值再与喷氨量实际值相比较,利用PID调节器3得出喷氨调节阀的调整指令。该调节回路提高系统的响应速度和精确度;同时,充分引入锅炉总风量的前馈量,使喷氨自动控制系统在机组升降负荷、煤质变动情况下均能保持良好的跟随性。喷氨自动控制优化后,机组在50%~100%负荷率下能保持自动投入。正常工况下烟囱入口NOx质量浓度均能控制在设定值(50mg/m3)内,稳态条件下能控制在设定值±5mg/m3以内,自动控制效果良好。研究结果表明:优化脱硝喷氨自动控制逻辑,既可以提高烟囱入口NOx质量浓度控制精确度,又可以有效降低脱硝系统还原剂耗量,对于提高脱硝系统运行的经济性和安全性都具有重要意义。
2.4喷氨均匀性差
随着SCR脱硝系统运行时间的延长,SCR脱硝系统出现故障,氨逃逸率有增大趋势。SCR反应器出口氨逃逸体积分数逐渐增加,从早期不足3×10-6(设计值小于3×10-6)升高到42×10-6。较高的氨逃逸体积分数对SCR反应器、空气预热器、低温省煤器等设备构成严重威胁。按照催化剂设计寿命、取样分析及使用情况,催化剂失效可能性不大。催化剂磨损会造成氨逃逸率增加,脱硝系统氨气喷嘴堵塞将加剧氨逃逸。催化剂及喷嘴磨损情况只能在机组停运后检查确认。为查找喷氨系统故障,采用排除法,首先从容易判断的喷氨均匀性着手试验分析。氨逃逸率与氨与NOx的混合效果有着密切的关联,氨的分布对SCR脱硝系统运行的最佳性能非常重要。根据喷氨均匀性试验结果分析,可以看出SCR反应器入口截面NOx质量浓度分布偏差较小,最大为352.7mg/m3,最小为267.6mg/m3,分布较为均匀(见表1)。
SCR反应器出口截面NOx质量浓度沿宽度方向均呈阶梯形分布:靠反应器中心线区域NOx质量浓度偏高,靠反应器外侧墙区域NOx质量浓度偏低,见表2。
SCR反应器出口NOx质量浓度分布偏差较大,存在大面积NOx质量浓度显著较高的点。与此相对应,反应器左后区域氨逃逸体积分数均超过67.5×10-6,右后区域氨逃逸体积分数均超过75.4×10-6。氨逃逸在线监测仪表安装于反应器靠右侧墙上,这也解释其显示值较高的原因。通过现场分析发现反应器中间靠前区域的喷氨支管U形管有7根被堵死(存有大量积水),这些管道对应的喷氨区域无氨气喷入,造成该区域出口的NOx质量浓度较大。由于氨气都喷入反应器左后和右后区域,造成这些区域NOx质量浓度较小,甚至测量不到NOx质量浓度。局部区域过量喷氨势必造成局部区域氨逃逸体积分数较大。支管疏通后,在线喷氨量显著下降,由此可以得出,喷氨支管堵塞是导致喷氨量较大和喷氨不均匀的主要原因,但经测量SCR反应器出口氨逃逸体积分数后发现仍有部分区域氨逃逸体积分数较高情况。根据SCR反应器出口NOx质量浓度及逃逸氨分布情况,对喷氨格栅各支管手动阀开度进行多次调节。喷氨优化调整后,SCR反应器出口截面NOx质量浓度分布较均匀,见表3。