科学家们在实验室获得各种元素在各种条件下发生的光谱样本,有了这些样本,与采集到的各种光源光谱对照分析,就能够得到这些光源是什么元素发出,及其各种元素的丰度(比例)。这就是科学家通过恒星光谱分析,就能得到恒星状态的原因。
通过恒星光谱分析,还能知道恒星的大小和寿命科学家们通过对恒星的长期观测,发现了一个规律,就是质量越大的恒星,光度越高,表面温度也越高,这样就能够通过一颗恒星的亮度,来推测恒星质量的大小了。
最常用的恒星光谱分类系统是美国哈弗大学天文台在十九世纪末提出的,称为哈佛系统,这个系统将恒星光谱分为O、B、A、F、G、K、M等类型,每个光谱型又分为10个次型,以阿拉伯数字0~9标注。
不过现在观测到的恒星,最热的星为O5,最暗的星为M5,这样O型只有6小类,M型只有5小类,暂时就只观测到61小类。
O型光谱恒星是指大于太阳质量20~150倍以上的恒星,呈现蓝色,其表面温度达到25000~55000K,绝对亮度是太阳的20万~500万倍。这种巨型恒星在银河系存在很少,约占恒星总数约0.00003%左右。
M型光谱恒星是指最小的恒星红矮星,质量在太阳的0.4倍以下,最小的只有太阳质量的0.08倍,表面温度2000~3500K。这种恒星是银河系的主流恒星,占据了恒星总数约76.45%。
太阳属于G型光谱,这个光谱型恒星包括0.8~1.2倍太阳质量的恒星,呈现黄色,因此又叫黄矮星,表面温度在5000~6000K之间,在银河系约占有7.8%的比重。太阳就是一颗黄矮星,质量为1.9896*10^30千克。
恒星光谱还有一些其他的分类方法和类型,这里就不展开说了。
恒星寿命是与质量成反比的,也就是质量越大的恒星,由于其内部温度和压力极高,导致的核反应就越激烈,燃烧得就越快,消耗的燃料就越大,因此寿命就越短;反之寿命就越长。因此,科学家们通过对恒星光谱分析,得到恒星质量大小,由此又能够得到恒星寿命长短。
经过对恒星光谱里面的元素比例分析,各种元素的丰度,就可以得到恒星演化到了哪个阶段,还有多久的生存期了。这是因为恒星从一诞生,就在源源不断地进行着核聚变,使恒星元素组分不断发生变化。
因此,在恒星演化的不同阶段,光谱中的元素丰度是不一样的,通过分析恒星光谱知道了恒星各种元素的丰度,就知道了恒星演化大致到了哪个阶段,从而得出其年龄。这有点像对人类年龄的了解,医生知道了人类在什么年龄段的骨密度、机体组织状态等指标,通过看检查单化验单就大致知道这个人的年龄了。
从恒星光谱还能得到恒星与我们的距离从恒星光谱得到恒星与我们的距离有两个常用方法:一是通过恒星的绝对星等与目视星等换算,得出恒星距离;二是通过恒星的光谱红移量或蓝移量计算出恒星距离。
绝对星等和目视星等都是恒星亮度的衡量指标,都以数值表示,数值越大则表示越暗,反之越亮,还有负数,负得越多恒星就越亮。每一个等级亮度相差2.512倍,因此等级之间的亮度差就是2.512倍的指数。如1等星与6等星之间差5等,亮度就相差2.512的5次方倍,约为100倍。
绝对星等是恒星的绝对亮度,理论上是将恒星放在10秒差距的同一起跑线上来对比其亮度,因此绝对星等是恒星的真实亮度。秒差距是宇宙天体距离单位,1秒差距约3.26光年,10秒差距就是32.6光年。
目视星等简称视星等,是人类肉眼看到恒星亮度的感受(包括望远镜看到亮度的换算)。由于恒星有远有近,人眼看到的亮度就不能代表恒星的真实亮度,绝对亮度更大的恒星,由于距离更远,看起来会反而更暗;而绝对亮度不大的恒星,由于其距离很近,却会更亮。
比如太阳的绝对星等为4.83等,目视星等为-26.74等;天狼星A的绝对星等为1.42等,目视星等为-1.47等。从这两颗恒星的绝对星等比较,天狼星比太阳要亮约23倍多,但目视亮度天狼星与太阳就完全无法比较了。