进而又得出了乘法公式:
- 贝叶斯定理
简单的来讲,贝叶斯定理其实就是,我们先假设一个事件发生的概率,然后又找到一个信息,最后得出在这个信息下这一事件发生的概率。
举一个我们生活中的例子,当我们和一个被怀疑做坏事的人聊天时,我们首先假设他做坏事的概率为a,然后我们根据和他交谈的信息,得出对他新的认识,重新判断他做坏事的概率b.
贝叶斯就是阐述了这么一个事实:
新信息出现后B的概率=B的概率 X 新信息带来的调整
如果当直接计算P(A)较为困难时,而P(Bj),P(A|Bj) (j=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。
思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...Bn,这样事件A就被事件AB1,AB2,...ABn分解成了n部分,即A=AB1 AB2 ... ABn, 每一Bj发生都可能导致A发生相应的概率是P(A|Bj),由加法公式得
P(A)=P(AB1) P(AB2) .... P(ABn)
=P(A|B1)P(B1) P(A|B2)P(B2) ... P(A|Bn)P(PBn)
所以调整后的贝叶斯公式为:
概率中通常将试验的结果称为随机变量。随机变量将每一个可能出现的试验结果赋予了一个数值,包含离散型随机变量和连续型随机变量。
既然随机变量可以取不同的值,统计学家就用概率分布描述随机变量取不同值的概率。相对应的,有离散型概率分布和连续型概率分布。
数学期望和方差
数学期望是对随机变量中心位置的一种度量。是试验中每次可能结果乘以其结果的概率的总和。简单说,它是概率中的平均值。