excel基本数据分析方法,excel中的数据分析方法至少4种

首页 > 实用技巧 > 作者:YD1662023-11-03 16:23:44

此文是《10周入门数据分析》系列的第4篇。

想了解学习路线,可以先行阅读

公中号上已更新到第11篇,详情可见文末。


前一篇分享了,今天这篇讲实操,教大家用Excel做一次简单的分析。一是让大家了解数据分析是一个怎样的流程;其次熟练Excel的操作(学的知识要用起来),包括公式,数据透视表等。

这里我用Python在智联招聘上爬取了约1800条的BI工程师的职位信息,并且将岗位名称、公司名称、薪水、所在城市、所属行业、学历要求、工作年限这些关键信息用CSV文件保存下来。

excel基本数据分析方法,excel中的数据分析方法至少4种(1)

爬的过程就不赘述了,源数据附给大家,公众号(数据分析不是个事儿)回复“数据”可获得

操作版本:Excel 2016 ,WIN 10

一个完整的数据分析都需要经历这样几个步骤:

一、明确目的

数据分析的大忌是不知道分析的方向和目的,拿着一堆数据不知所措。数据用来解决什么问题?

是进行汇总统计制作成报表?

是进行数据可视化,作为一张信息图?

是验证某一类业务假设?

是希望提高某一个指标的KPI?

要知道一切数据分析都是以业务为核心目的,所以要找到业务问题的思考点。关于找到问题的切入点,之前数据分析思维篇讲过。永远不要妄图在一堆数据中找结论,目标在前,数据在后,哪怕是把数据做个平均值比较,也比没有方向好。每一步尝试都会引发进一步思考,比如为什么这个值这么低,原因在哪里,这个差异波动有何规律……

所以,分析前不妨先来看一下我们爬的数据:

excel基本数据分析方法,excel中的数据分析方法至少4种(2)

假设我是一个BI工程师,我想知道:

目前BI工程师的平均薪资水平如何,薪资的区间分布如何

各地区对BI工程师的需求量是多少,哪些地区设岗最多。

不同年限的BI工程师薪资差异如何,3年后我差不多是什么样的价位?

薪水较高的公司有哪些?

带着这样的问题,那我们的分析就有了方向,后续则是将目标拆解为实际分析展示的过程。

二、了解数据概况

excel基本数据分析方法,excel中的数据分析方法至少4种(3)

拿到数据肯定是要先看一下的,你想要的数据全不全,拿到的数据有哪些可分析之处。主要就是看数据字段,要了解数据字段的含义:

JobName——岗位名称

Company——公司名

Salary——薪水

City——城市

Jobtype——岗位领域

Edulevel——学历要求

WorkingExp——工作年限要求

三、数据清洗

接下来进行数据清洗。数据清洗一般包括无效值、缺失值、重复值处理;数据是否有乱码,错位现象;数据口径问题,两张表的关联ID名是否一致;还有是否有统一的标准或命名,如公司名全写或缩写的区分。数据转换则是将数据规整为统一格式处理。因为这是只是Excel级别的数据分析,且就一张简单的数据表,不会有太多复杂的操作。这里简单总结下。

1、有无缺失值

数据的缺失会很大程度影响分析结果。数据缺失的原因很多,比如数据采集的时候,因为技术的原因,爬虫没有完全抓去。但工作上更多的原因是数据入库的时候就没有收集全,有没填有遗漏,这又是数据规范数据治理的话题了。一般来说,如果某一字段数据缺失超过40%~50%,就没有分析意义了,考虑删除或作其他措施。

看数据有没有缺失,只要在Excel中选中该列看计数。

这里,eduLevel有缺失(1759/1800)但不多,不影响实际分析。

2、脏数据处理

发现jobName列里面有一些类似BIM工程师的岗位信息,这些应该都是土木行业的工程师,爬去时没做过滤,还有包含“bim”“BIOS””BIW”等字段。

因为包含多重过滤,这里我建立辅助列,设立判断条件,然后进行筛选过滤。

excel基本数据分析方法,excel中的数据分析方法至少4种(4)

首页 1234下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.