使用缓存要注意什么,怎么正确处理缓存

首页 > 实用技巧 > 作者:YD1662024-02-03 00:43:32

❹ 假设缓存刚好到期失效时,读请求从db中读取数据,写请求更新完数据后再失效缓存后,读请求将旧数据存入到缓存中,这种情况也会导致脏数据的问题。实际上这种情况发生的概率很低,要发生这种情况的前提条件是写数据库要先于读数据库完成,一般而言读数据库相比于写数据库要耗时更短,这种前提条件成立的概率很低。针对这种”逻辑失败“造成的数据不一致,可以采用上面所说的异步双删的策略以及过期失效的方式来避免。

可以看出在并发的情况下,如果条件苛刻的话,这两种更新的时序都有可能导致脏数据的情况。只不过在大概率的情况下先更新数据库再失效缓存能够保证数据一致,也是业界推荐的处理方式,包括Facebook的论文《Scaling Memcache at Facebook》也使用了这个策略。当数据发生变更上,需要考虑的是最新的数据放置在哪里?很显然cache aside pattern 选择的是将最新的数据放到了db上(cache asside pattern:缓存靠边站),因为数据不一致的情况大概率会存在,需要根据业务场景选择合适的可信设备存储最新的数据。

3.2 Write/Read Through

Cache Aside Pattern对db以及缓存的更新逻辑是由调用方自己去控制,很显然这是一个很复杂的过程。Write/Read Through对调用方而言,缓存是作为整个的数据存储,而不用关系缓存后面的db,数据库的更新则是由缓存统一进行管理,对调用方而言只需要和缓存进行交互,整体过程是透明的。

使用缓存要注意什么,怎么正确处理缓存(9)

3.3 Write Behind Cache Pattern

这种模式是当数据更新的时候直接更新缓存数据,然后建立异步任务去更新数据库。这种异步方式请求响应会很快,系统的吞吐量会明显提升。但是,因为是异步更新数据库,数据一致性的保障就会变弱,如果更新数据库失败则会永远的造成系统脏数据,需要很精细设计系统重试的策略,另外如果异步服务宕机的话,还要考虑更新的数据如何持久化,服务重启后能够迅速恢复。在更新数据库时,由于并发多任务的存在,还需要考虑并发写是否会造成脏数据的问题,就需要追溯每次更新数据的时序。使用这种模式需要考虑的细节会有很多,设计出一套好的方案是件很不容易的事情。

3.4 更新策略的思考

上面这四种更新策略是非常经典的,也是业界经过大规模业务总结下来的经验,如果认真分析这四种更新策略的话,也会是受益匪浅,在更新策略的设计我得理解是主要关注如下两个方面:

最新的数据应该放置在哪里?

缓存的存在是为了系统高性能,利用内存的IO读取的高速的特性,来提升系统的性能,提高系统吞吐量,另外,缓存的存在会让一部分读请求不会到达db层,分解了db的压力,毕竟db是最容易出现瓶颈的地方。这是为什么利用缓存的两个重要原因。但是,带来的问题就是,数据会存在在两个地方分别是缓存以及数据库中,当数据更新的时候就需要思考让”正确的数据应该放在哪个最可信的存储介质上“,就需要结合业务性质在两个数据存储介质上进行选择。

Cache Aside Pattern选择先更新数据库,再失效缓存,这样可以保证最新最正确的数据一定会落在数据库中,这样可以保证核心的业务数据在数据库中一定是可信的,但是带来的问题是业务逻辑更复杂,系统处理更新逻辑耗时更长。如果是非核心数据的更新,可以选择write behind cache pattern的方式,只需要更新缓存即可,能够快速的响应。缺点是很容易造成数据不一致,数据库中的数据不一定的就是最可信的数据。所以,不同的更新策略实际上也是将最新的数据优先选择放在哪里更合适以及系统性能的一种权衡,需要结合业务场景做好trade-off。

4. 数据不一致性

4.1 数据不一致的原因

由于引入缓存,数据就会分散在两处不同数据源,当数据更新时,实时上很难做到数据一致,除非采用强一致性方案,这里不在进行讨论。在找出合适的解决方案前,需要分析下存在数据不一致的主要原因,才能对症下药:

1)逻辑失败造成的数据不一致:在上一章主要分析了更新数据时的四种更新策略,在并发的情况下,无论是先删除缓存还是更新数据库,还是更新数据库再失效缓存,都会数据不一致的情况,主要是因为异步读写请求在并发情况下的操作时序导致的数据不一致,称之为”逻辑失败“。解决这种因为并发时序导致的问题,核心的解决思想是将异步操作进行串行化。

2)物理失败造成的数据不一致:在cache aside pattern中先更新数据库再删除缓存以及异步双删策略等等,如果删除缓存失败时都出现数据不一致的情况。但是数据库更新以及缓存操作是没办法放到一个事务中,一般来说,使用缓存是分布式缓存如果缓存服务很耗时,那么将更新数据库以及失效缓存放到一个事务中,就会造成大量的数据库连接挂起,严重的降低系统性能,甚至会因为数据库连接数过多,导致系统崩溃。像这种因为缓存操作失败,导致的数据不一致称之为”物理失败“。大多数情况物理失败的情况会重用重试的方式进行解决。

4.2 数据一致性的解决方案

在绝大部分业务场景中,追求的是最终一致性,针对物理失败造成的数据不一致常用的方案有:消费消息异步删除缓存以及订阅Binlog的方式,针对逻辑失败造成的数据不一致常用的方案有:队列异步操作同步化。

4.2.1 消费消息异步删除缓存

主要流程如下图所示:

使用缓存要注意什么,怎么正确处理缓存(10)

4.2.2 订阅Binlog

主要流程如下图所示:

使用缓存要注意什么,怎么正确处理缓存(11)

4.2.3 利用队列串行化

在分析cache aside pattern发现在并发的情况下也会存在数据不一致的场景,只不过发生的概率很低,另外如果先删除缓存再更新数据库在并发读写的情况下也会存在数据不一致的情况。类似这种由于并发时序导致的数据不一致的情况,都是因为写请求还没有结束读请求读取的是旧数据,如果读请求在写请求之后处理,即请求的处理能够串行化的话,就能保证读请求读到的是写请求更新的最新的数据。

将请求进行串行化,最常用的方式是采用队列的方式,一个队列只能对应一个工作线程,更新数据的写请求放置队列中,等待异步处理;读请求如果能从缓存中获取数据,则返回,如果缓存中没有数据,就将读请求放置到队列中,等待写请求数据更新完成。这种方案需要考虑的问题有:

1)读请求长时间阻塞:如果队列中挤压了多个写请求,则读请求会存在长时间阻塞的情况,需要设置超时处理策略,一旦超过超时时间,则直接读取数据库返回,避免长时间不响应;另外,在业务中需要进行压测,考虑队列中在峰值情况下会积攒多少写请求,如果过多,需要考虑队列优化的方式和相应的解决方案;

2)多个队列分散压力:可以根据数据项通过hash等路由方式,创建多个队列并行执行来提升系统吞吐量;

3)操作复杂需要考虑全面:由于采用队列来进行串行化,那么要考虑队列的可用性,队列阻塞以及服务挂掉后的容灾恢复策略是否健壮等等,相对而言整体的方案需要考虑的点会有很多;

这种方式可以做到数据强一致性,由于串行化系统的吞吐量会下降很多并且操作复杂,毕竟任何方案都会有利弊权衡的过程,需要根据业务场景选择合适的技术方案。针对数据强一致性很有很多方案,但基本上操作设计都很复杂,在大多数业务场景满足数据最终一致性即可。

当然除了以上这三种通用的方法外,为缓存设置过期时间以及定时全量同步,也是接近最终一致性的最简单以及有效的方式。

5. 常见的几个场景问题

在分析数据更新的策略后发现正确使用缓存是一件很不容易的事情,在实际使用缓存时,还会有很多有意思的场景(”坑“),在这里进行一下总结:

1)过期还是不过期缓存数据:针对缓存数据是否需要设置过期时间也需要结合场景来进行分析,一些长尾商品,大多数数据在业务中都是读场景更多,并且缓存空间很大的话,就可以考虑不过期数据。那是否就意味着这就是一份静态数据了?当缓存空间已满时,数据会根据淘汰策略移除缓存,另外数据更新时也可以通过Binlog等其他方式进行异步失效缓存。

如果系统通过消息异步更新操作成本过高或者依赖于外部系统无法进行订阅binlog异步更新的话,就需要来采用过期缓存数据来保障数据最终一致性。

2)维度化缓存与增量更新:如果一个实体包含多个属性,在实体发生变更时,如果将所有的属性全部更新一遍,这个成本就很高,况且只是其中的几个属性发生变化。因此,将多个属性进行各个维度化进行拆解,按照多维度进行缓存,更新时只需要增强更新对应维度即可;

3)大value:大value的问题要时刻警惕,可以考虑将value进行压缩,以及缓存时进行拆解,然后在业务服务中进行数据聚合来避免大value的问题;

4)热点缓存问题:针对热点数据如果每次都从远程缓存去获取,会给缓存系统带来过多的负载,会导致获取缓存数据响应过慢,可以使用缓存集群,挂载更多的从缓存,读取数据从从缓存中获取。针对热点数据可以使用应用本地缓存来减少对远程缓存的请求负载;

5)数据预热:可以预先将数据加载到缓存中,方式缓存数据为空,大量的请求回源到db。如果容量很高可以考虑全量预热,如果容量优先,就只能选择高频热点数据进行数据预热,还需要关注是否有批量操作以及慢sql带来的性能问题,在整个数据预热过程中需要有可靠的监控机制来保障;

6)非预期热点数据:针对业务预估不足的热点数据,需要有热点发现系统来统计热点key,实时监控非预期的热点数据,可以将这些key推到本地缓存中,防止预估不足的热点key拖垮远程缓存服务。

7)缓存实例故障快速恢复:当某一个缓存实例故障后,缓存一般是采用分片实例存储,假设缓存key路由策略采用的取模机制的话,会导致当前实例的流量迅速到达db层,这种情况可以采用主从机制,当一个实例故障后其他实例可以使用,但是这种方式的问题在于水平扩展不够,如果分片实例上增加一个节点的话,会导致缓存命中率迅速下降。

如果key路由策略采用的一致性哈希的话,某一个实例节点故障,只会导致哈希环上的部分缓存不命中不会导致大量请求到达db,但是针对热点数据的话,可能会导致改节点负载过高成为系统瓶颈。针对实例故障恢复的方式有:1. 主从机制,对数据进行备份,尽可能保障有可用数据;2. 服务降低,新增缓存实例然后异步线程预热数据;3. 可以先采用一致性哈希路由策略,当出现热点数据时到达某个阈值时降级为取模的策略。

6. 几个影响因素

影响缓存整体的性能会有很多大大小小的影响因素,比如语言本身的特性的影响,例如Java需要考虑GC的影响。还需要尽可能的提升缓存命中率等等多个方面,总结下来,核心的几个影响因素如下:

1)提升缓存命中率:影响缓存命中率的几个因素:

❶ 业务时效性要求:缓存适合"读多写少"的业务场景,并且业务性质决定了时效性要求,不同的时效性要求决定了缓存的更新策略以及过期时间,对时效性也低的业务越适合使用缓存,并且缓存命中率越高;
❷ 缓存粒度设计:通常而言,缓存对象粒度越小就越适合使用缓存,不会导致频繁更新导致缓存命中率下降;
❸ 缓存淘汰策略:如果缓存空间有限,不同的缓存淘汰策略也会影响缓存命中率,如果淘汰的缓存数据后续被大量使用,无疑就会降低缓存命中率;
❹ 缓存部署方式:在使用分布式缓存时,要做好容量规划以及容灾策略,方式缓存实例故障后造成大规模缓存失效;
❺ Key路由策略:不同路由策略会在节点实例故障后带来不同的影响,如果采用取模的方式水平扩展时则会降低缓存命中率。通过这些分析,提高缓存命中率没有放之四海而皆准的统一规则,需要从这些角度去思考,尽可能的在高频访问且时效性不是很高的业务数据上使用缓存。

2)序列化方式:使用远程缓存服务免不了需要经过序列化后在网络中进行数据传输,那么选择不同的序列化方式对缓存性能会有影响。选择序列化方式时需要考虑序列化耗时、序列化后在网络传输中包大小以及序列化的计算开销。

3)GC影响:采用多级缓存以及大value时会采用应用本地缓存,对于java应用,就需要考虑大对象带来的GC影响。

4)缓存协议:了解不同的缓存协议的优缺点比如Redis以及Memcached协议,根据业务场景进行选择。

5)缓存连接池:为提升访问性能,需要合理的设置缓存连接池。

6)完善的监控平台:需要考虑是否有一套缓存的监控平台,能够追踪缓存使用情况、缓存服务整体的性能以及一些非预期热点数据的发现策略等等,这样才能综合整体的保障缓存服务的可用以及性能。

7. 多级缓存设计案例

从用户发出请求到到最底层的数据库实际上会经历很多节点,因此在整个链路上都可以设置缓存,并且按照缓存最近原则将缓存放置在里用户最近的地方提升系统响应的效果最为明显,相应的提升系统吞吐量的效果就越为显著,通过能够大大降低对后端的压力。在整个链路流程里可以添加缓存的地方有:发起请求-->浏览器/客户端缓存-->边缘缓存/CDN-->反向代理(Nginx)缓存-->远程缓存-->进程内缓存-->数据库缓存。服务端多级缓存设计通用的技术方案如下:

使用缓存要注意什么,怎么正确处理缓存(12)

上一页1234下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.