1867年,德国物理学家约翰▪希托夫发现,在一根两端镶嵌着金属棒的真空玻璃管的两端接入一个电池,就会有看不见的神秘物质从玻璃管的一端流向另一端。这种物质轰击在玻璃管另外一端涂着荧光材料的屏幕上,就能使材料发光。但是没人知道这种物质是什么,人们把它命名为阴极射线。
1897年,汤姆森发现,真空管内流动的物质不是射线,而是一种带有负电的粒子,这就是我们今天所说的电子。电子向正极移动,不仅仅是因为正负相吸,同时还是因为在灯丝和屏幕之间存在一个强大的电场。在后来的彩色电视机上,这个电压通常为2W伏,电子在这样的电场中被加速到高速运动。
由于CRT中是抽成真空的,所以电子在前进过程中不会遇到任何阻碍,直到高速撞击荧光物质发出闪光,并在偏转线圈和行输出变压器的共同作用下组合成图像。
北京正负电子对撞机(BEPC)是世界八大高能加速器中心之一, 是我国第一台高能加速器,也是高能物理研究的重大科技基础设施;由长202米的直线加速器、输运线、周长240米的圆型加速器、高6米重500吨的北京谱仪和围绕储存环的同步辐射实验装置等几部分组成,外型像一只硕大的羽毛球拍。这台为我国科学发展做出巨大贡献的大型装备的运作原理其实和CRT一模一样。
如今,当年那些笨重的CRT已经被今天的平板显示器所替代,这些显示器的原理是利用LED发光元件组成的阵列。正是由于平板显示器技术的飞速发展和产品的普及,才成就了我们今天的智能手机产业。虽然LED平板显示器与CRT的发光原理不同,但相同的都是背后的电子。
六、电磁炉电能产生磁场。我最初知道这个道理还是在初中的物理课本上,给一个缠绕在铁棒上的线圈通电,就会产生磁场,这个磁场能改变小磁针的方向、能吸引铁屑以及一些比较重的铁磁性物质。交变电流能产生交变磁场,在工厂中最典型的设备就是电炉炼钢。
我们家中的电磁炉也是这样一种装置。电磁炉的原理是电磁感应现象,即利用交变电流通过线圈产生方向不断改变的交变磁场,处于交变磁场中的导体的内部将会出现涡旋电流,这是涡旋电场推动导体中电子运动所致;涡旋电流的焦耳热效应使导体升温,从而实现加热。
我们身处的世界到处都是磁场,有些是永久的,有些是临时的,有些范围很小,你需要凑近了才能感应到,而有些则非常巨大,这就是我们地球的磁场,虽然我们在没有仪器的情况下感觉不到地球磁场的存在,但是我们却一直在利用它。
七、指南针和磁场漂移就像我在文章开头提到的司南,其实就是利用地球磁场来指引方向的一种简单设备。这种装置的一端可以永远指向南方,地球上无论有多少个指南针,只要我们把它们静置在那,它们就会指向同一个方向,同时也是在向我们展示着,地球磁场的存在。
一直以来,指南针都在行军和航海等领域为我们提供方向的指引。然而,这里面有一个严重的问题,那就是地球的磁极并不是固定不变的,它也会发生漂移,有时候甚至会漂移很长一段距离。研究人员表示,磁北极正在从加拿大向西伯利亚“滑行”。磁北极的移动非常明显,世界各地的研究人员正在急于更新世界地磁模型。