为了让LARP控制的智能体更像真人,研究团队还特意引入了随时间变化的遗忘机制。
当衰减参数σ超过一定阈值时,记忆提取会失败,从而模拟遗忘过程,σ的计算方式则是依据心理学定律设定的:
σ = αλN (1 βt) - ψ
λ代表记忆的重要性程度,N表示提取次数,t代表最后一次提取后经过的时间,ψ是角色自身的遗忘速率,α和β为缩放参数
这一公式由心理学家Wayne Wickelgren提出,是对艾宾浩斯遗忘曲线的一个补充。
而在人物性格的塑造上,研究人员在体现不同性格的数据集上预训练出了基础模型,并用专门构建的指令数据集进行监督微调。
同时,团队还为角色的不同能力设计了多个数据集并训练出了低秩适配模型,并于基础模型动态整合,指导决策模块生成符合人设的内容。
同时,LARP中还设置了行动验证和冲突识别模块,确保模型为agent生成的内容受游戏环境数据和先验知识规范约束。
目前,LARP的GitHub页面已经建立,不过还处于空仓状态,代码暂未发布。
随着大模型研究的深入,智能体和群体智能实验如今已成AI研究最热门方向之一。
比如去年爆火的斯坦福AI小镇、清华推出的“AI游戏公司”和“AI狼人*”,都让人们看到了多智能体协同的效益。
关于智能体的更多内容,量子位智库推出的《2023十大前沿科技报告中》也有详细介绍。
论文地址:
https://arxiv.org/abs/2312.17653
— 完 —
量子位 QbitAI · 头条号签约
关注我们,第一时间获知前沿科技动态