此外,这里还展示了从一个从分子到金属,然后到人体组织的零场核磁共振,如右边两张图展示的手指和人脑的成像。尽管现在成像的清晰程度还不如传统的磁共振成像,但是它没有强磁场、更安全,而且还有一个很大的优势,就是很便宜、成本很低。如果未来能够进入到医院的话,就会大大地降低医疗成本,所以它的应用前景是非常广泛的。
助力暗物质探测除了核磁共振,量子自旋磁力计还对基础物理的研究起到了很大的帮助。
大家知道宇宙是由什么组成的吗?从现在的理论可以知道,实际上宇宙大部分都是由看不见摸不着的暗物质与暗能量组成,只有5%是我们看得见的物质。
探测这样的暗物质、暗能量就成为了现在国际上竞争的热点问题。很多研究小组开始去寻找暗物质的踪迹。那么如何寻找呢?我举两个国内著名的上天入地的例子。
一个是飞行在高空的”悟空”号暗物质探测卫星(下图左),还有一个是安装在四川锦屏地下的PANDAX探测器(下图右)。它们共同的特点是非常适合搜寻高能区、大质量的暗物质粒子候选者,但它们都需要借助于我们国家的大科学平台,是耗资巨大的项目。
除了这些高能区的暗物质粒子候选者,实际上还有一类低能区、超轻质量的暗物质粒子候选者,比如说轴子和暗光子。对于这一类的暗物质粒子,刚才说的大型科学仪器就无能为力了。
那怎么去探测它们呢?
下图展示的是我们最近在实验室研发的一种基于自旋的暗物质探测器,如果在这台探测器上我们发现了暗物质粒子候选者,如轴子或者暗光子的迹象,那就说明我们探测到了暗物质。
基于自旋的新型微激射器,可以在实验室里寻找暗物质
看到这大家可能会疑惑,我们究竟是怎么探测暗物质的?
简单来说,就是当暗物质粒子,如轴子,遇上自旋的时候就会发生相互作用,相当于产生一个非常微弱的等效磁场,至于到底有多微弱,科学家们现在都无法预测。
但这个磁场能够用我们的自旋去测量,即如果探测出信号,那就说明这个相互作用存在,也即说明了暗物质的存在。相比于刚才上天入地的探测器,我们这里发展了一种桌面式探测装置,从成本和价格来说当然是非常经济的。
那么大家可能会问,这么多人都在搜寻暗物质,到底有没有找到呢?
这里先给大家展示一个大型天文学观测的结果,这是一个暗光子的实验结果。横轴表示的是暗光子——一种超轻质量的暗物质粒子候选者——的质量,纵轴表示的是暗光子跟自旋相互作用的强度。这个相互作用强度越弱,就代表着它在自旋上产生的磁场就越弱,也就意味着我们更难以去探测到。这是用天文学探测方式给出的一个界线。
因为没有信号,在这个界线以上我们已经可以排除暗物质的存在。但是在这个界线以下,我们并不知道暗物质是否存在。这是受限于天文探测的测量能力。那也就意味着暗物质要是存在的话,也是在这个界线以下。