4 5 6 7 8的通项公式

首页 > 政策法规 > 作者:YD1662023-07-30 05:57:48

g)点差法

只要是中点弦问题,就用点差法。

4 5 6 7 8的通项公式,(17)

3. 与直线相交

这道题目一般为必考,而且每年形式基本都一样。

大概是这样:有一条直线,与这个圆锥曲线相交于两个点A,B,问balabala……

首先,从理论上说说这道题的解题步骤:

步骤1:先考虑直线斜率不存在的情况。求结果。(此过程仅需很简短的过程)

步骤2:设直线解析式为 y=kx b(随机应变,也可设为两点式……)

步骤3:一般,所设直线具有某种特征,根据其特征,消去上式中k或b中的一个。

步骤4:联立直线方程和圆锥曲线方程,得到:

4 5 6 7 8的通项公式,(18)

步骤5:求出判别式△ ,令 △>0(先空着,必要时候再求 △>0 时的取值范围)

步骤6:利用韦达定理求出 x1x2,x1 x2(先空着,必要时再求y1y2)

步骤7:翻译题目,利用韦达定理的结果求出所求量。

我们可以以下面的题目为例,看一下解题步骤。

4 5 6 7 8的通项公式,(19)

4 5 6 7 8的通项公式,(20)

上一页12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.