光行差示意图
光行差,简单的来说就是地球的运动,会使恒星的方位产生变化。举例来说就是,假设在无风的天气里下雨,雨滴会垂直下落到你的身上,当你以一定的速度奔跑是,雨滴就会以另外一个角度落到你身上,不再垂直。结合这个角度的改变和你的速度,就可以估计出雨滴下落的速度。同样使用恒星光行差,结合地球的公转速度和恒星角度的变化,就可以估算出光速。使用这种方法估算出的光速约为3.01*10^8 m/s,误差仅仅为0.4%。
新思路:如何提升光速测量精度?
首次准确在地球上,而不是依靠天体运动来测量光速的实验是在1849年由法国物理学家阿曼德·斐索实行的,他使用的方法叫做齿轮测速法。
齿轮法测光速
这个方法的关键在于齿轮的转速,齿轮从很低的转速开始逐渐提速,在转速提升到某一关键速度的时候,齿轮转过两个齿的角度时,光线刚好从远处的镜子里折回。这样根据两齿之间的角度以及齿轮的转速,镜子的距离就可以计算出光速的大小。假设齿轮的转速刚好是 ,齿轮一共有N个齿,远处的镜子距离观察者L。那么光速=L**N/
1849年阿曼德·斐索用这种装置测出的光速是3.15*10^8m/s,误差为5%,但是随后,法国科学家莱昂·傅科(就是用傅科摆演示地球自转的那个科学家),提高了这个装置的精确度,用旋转镜面代替了旋转的之轮,测出了2.98*10^8m/s的光速值,误差缩小到了0.5%. 旋转齿轮法和旋转镜面法对于光速的准确测量产生了很深远的影响,这种方法简单易行,结果很有说服力。直到1926年,这种方法都一直被当做测量光速的首选,精度一直提高到了0.001%左右。
齿轮测速法较为精确并且可信地测出了光速的值。之后不久(1861-1862年)就出现了伟大的麦克斯韦(1831-1879,苏格兰物理学家),给出了麦克斯韦方程组,完美的描述了电磁波的运动,他从方程组中得出电磁波的速度约为c=3*10^8m/s,非常接近当时光速的值,于是他大胆的猜测光就是一种特殊频率的电磁波。后来的实验确实证明了他的猜测。
史上最伟大的物理学家之一—詹姆斯·克拉克·麦克斯韦
当知道光是电磁波之后,我们就可以从另外一种方式得到准确的光速,那就是通过测量(真空磁导率)和(真空介电常数)来计算光速,也就是上面提到的c=。在1907年,美国科学家爱德华(Edward Bennett Rosa)和多尔西(N.E. Dorsey)通过这种方法给出了当时最精确的光速值2.99788*10^8m/s,误差仅仅为0.003%.。
20世纪50年代以后,随着电子工业技术的发展, 各种测量光速的新技术相继出现,例如谐振腔法(1950年),无线电干涉法(1958年),激光干涉法(1972年)等。下面我们一一介绍。
谐振腔法主要依据的物理原理就是光也是电磁波,因为任意波长的电磁波具有相同的速度,而电磁波的速度和它的波长和频率之间存在如下的关系: 速度=波长*频率。谐振腔法通过腔的尺寸可以很准确计算出里面电磁波的波长,而电磁波的频率又是已知的,因此,可以直接用上述公式计算出光的速度(或者说电磁波的速度)。
最后一种要说的就是激光干涉法了。目前各种资料查到的光速的值 299792458m/s,是通过激光干涉法测量出来的。无线电干涉和激光干涉本质上是一样的,因为它们都使用的是电磁波,只是波长不相同而已。因此我们只介绍激光干涉法。
想象一下水波,如下图所示,当两个水波相遇时,会产生干涉。当波峰和波峰(或波谷和波谷)相遇时,产生相加干涉,当波峰和波谷相遇时,会产生相消干涉。同样的道理对于光或者激光也是成立的。