黎巴嫩的贝鲁特港口前后对比,图片来自npr.org
- 编者按 -
8月初,黎巴嫩贝鲁特港口发生的大规模爆炸令世界关注,这很可能是由于囤放在港口的2750吨硝酸铵引燃所引起,目前已造成150余人死亡,4000人受伤。
实际上,早在1921年,德国巴斯夫公司的一家硝酸铵库房也发生了一起骇人的爆炸事件,当时存放的4500吨硝酸铵与硫酸铵复合肥料爆炸,造成509人丧生,160人失踪,1952人受伤,7500人无家可归,工厂附近700多间房屋被毁,破坏程度不亚于此次黎巴嫩事故。巴斯夫公司时任首席执行官博施在悼念活动上表示,“灾难并非由疏忽或人为因素引起,我们至今仍无法解释的未知自然因素使我们所有的努力化为乌有”。由于当时巴斯夫掌握 “将空气变成面包” 技术,将空气中的氮转化成作物的肥料——硝酸铵,因此该事件未被人们严厉苛责。今日贝鲁特港口大爆炸,提醒我们人类并未从历史中汲取教训。
本文详细介绍科学家是如何矢志不渝地人工合成硝酸铵,硝酸铵对人类的生产生活到底发挥了哪些作用。
撰文 | 周 程(北京大学科学技术史教授)
责编 | 叶水送
● ● ●
2020年8月4日,黎巴嫩的贝鲁特港口发生一起大规模爆炸,据黎巴嫩卫生部媒体办公室公布,截至8月8日,遇难人数达158人,逾6000人受伤、21人失踪。剧烈爆炸已使30万人无家可归,造成损失预计超过30亿美元。
尽管事故的原因仍有待深入调查,但黎巴嫩的高级官员已经明确表示,此次大爆炸很有可能是在港口仓库存放六年之久的2750吨硝酸铵(NH₄NO₃)被引燃造成的。硝酸铵现已是一种普通化工产品,主要用于制作化肥和生产炸药,也被用于制作火箭推进剂和安全气囊等。
8月4日,黎巴嫩首都贝鲁特贝鲁特港发生大型爆炸事故,被指与存放在港内的2700吨硝酸铵有关。图源المسلمون في البرازيل . Hussein saifi Tv
虽然硝酸铵1659年就已被德国人J.R.格劳贝尔(Johann Rudolf Glauber, 1604–1670)首次制得,但是直到二十世纪初德国巴斯夫公司(BASF)的合成氨法固氮工程取得突破之后它才得以实现大规模生产。因为用氮气和氢气合成氨(NH₃)的工艺解决之后,人们便可以通过氨氧化法或硝石-硫酸法来批量生产硝酸(HNO₃),然后再用氨中和硝酸来批量制取硝酸铵。
可以说,没有合成氨工业的兴起便不可能有硝酸铵的大规模生产。接下来,我们就基于科学技术史视角谈谈合成氨工业是如何成就硝酸铵的大规模生产的。
1
人工固氮研究的缘起
托马斯·马尔萨斯(Thomas R. Malthus,1766-1834)曾于1798年在《人口原理》一书中指出:在无所妨碍的情况下,人类的性本能决定着人口将以几何级数增长;而在 “土地收益递减规律” 的作用下,食物只能以算术级数增长。因为人口的增长速度远大于食物的增长速度,所以人类欲摆脱因食物不足引起的贫困与恶习,就必须采取措施抑制人口的过快增长。
马尔萨斯的《人口原理》揭示了一个事实:工业革命后的英国人口出现了快速增长。实际上,随着工业革命席卷整个欧洲,欧洲各国的人口都出现了一定程度的增长。这样,如何用有限的土地养活更多的人口,便成了摆在欧洲各国面前的一个重大课题。与占有大量殖民地的老牌资本主义国家,如英国、法国、西班牙、荷兰等国相比,19世纪的德国满足国内粮食需求的压力尤其巨大。要扩大粮食生产首先必须增加肥料的供给,而当时人畜粪便和堆肥等传统肥料已无法满足日益增长的粮食生产的需求,故欧美等国不得不想方设法开拓新的肥料供应源。秘鲁钦查(Chincha)群岛上的鸟粪山就是在这个时候开始引起西方商人的关注的。
尽管19世纪初一些欧美学者已经测出钦查群岛上的鸟粪石中含有大量的尿素和氨,认为它是一种非常好的肥料,但在蒸汽船开始投入商业使用之前,不辞辛苦地把钦查群岛上的鸟粪石运回去当作肥料的西方商人并不多。欧美各国从秘鲁大量进口鸟粪石乃是1840年以后的事。由于开采量太大,19世纪50年代后期,人们就已发现,数千年堆积而成的钦查群岛上的鸟粪山不出二十年便被挖得依稀可见地表岩层了。
英国的工业革命还导致另外一个后果,炸药的使用量激增。机器大工业是建立在钢铁的大量使用基础之上的,而钢铁供应量的增加有赖于采矿业的发展,开矿不能没有炸药。另一方面,输送原料和产品以及劳动力需要兴建铁路、开挖运河,这些基础设施建设同样离不开炸药。1853年爆发的克里米亚战争更是将欧洲炸药的需求量推向了一个高峰。显然,进入19世纪中期后,17世纪后期发现的印度恒河旧河道上的硝石矿床已无法满足西方的需要,故英、法、德等国不得不把目光投向了南美阿塔卡马沙漠太平洋沿岸附近的硝石产地。该地区19世纪中期前属于秘鲁管辖,后因秘鲁战败而割让给智利。
智利硝石与中国火药不同,它的主要成分是硝酸钠,而不是硝酸钾。因人们先后找到了将硝酸钠转换为硝酸钾乃至硝酸的有效方法,加上诺贝尔(Alfred B. Nobel,1833-1896)又在1866年发明了使用硝酸制造高性能炸药的方法,故智利硝石吸引了很多欧洲人的关注。当然,它最初并非被用于提高农作物的产量,而是被用于生产炸药。后因秘鲁钦查群岛上的鸟粪石资源濒临枯竭,故欧洲各国开始进口智利硝石以替代秘鲁鸟粪石。19世纪后期,在生产炸药和肥料两种需求的刺激下,智利硝石的出口量猛增。面对这种局面,欧洲人又开始担忧智利硝石是否会像秘鲁鸟粪石一样很快就被消耗殆尽的问题了。1913年当选英国皇家学会会长的克鲁克斯(William Crookes,1832-1919)可以说是其中的代表者之一。
1898年,克鲁克斯在英国布里斯托尔召开的不列颠科学促进会上发表会长演讲时说到,马尔萨斯出版《人口原理》至今刚好满100周年,现在看来,马尔萨斯的预言极有可能变成现实,也即人类很快就会面临食物严重短缺的危机。他认为,自然界中的肥料有限,不可能长期满足人类粮食生产的需求。像智利硝石,按照目前这种趋势发展下去,1920年代就会频临枯竭;即使乐观估计,1940年代也肯定会告罄。如果届时找不到新的可供大量使用的肥料源,欧洲的粮食,尤其是小麦的产量出现下跌将无可避免。因此,他呼吁科学家们立即行动起来,着手研制可大量合成的新型肥料,尤其是能把空气中大量存在的氮气转换成种植小麦时不可或缺的含氮肥料。
自1840年德国化学家李比希(Justus von Liebig,1803-1873)揭示出了氮、磷、钾等元素对农作物的生长意义之后,人造肥料的生产便迈上了一个新的台阶。不过,李比希当时以为,农作物生长所需的氮可以直接从空气中吸收,故无须在人造肥料中添加含氮化合物。后来,英国的劳斯(John Lawes,1843-1910)和吉尔伯特(Joseph Gilbert,1817-1901)用实验证明,农作物不仅需要氮营养,而且通常只能从土壤中摄取氮营养。这样一来,如何快速、廉价地制取含氮化合物,特别是把空气中大量存在的氮元素固定下来便成了一个至关重要的课题。
人类最早开发出来的含氮化学肥料是硫酸铵。尽管这种在生产焦炭和煤气时加工获得的副产品价格低廉,但是它的产量非常有限,根本满足不了欧洲的农业生产需要。欲彻底解决欧洲的氮肥供应问题,只有一条路可走,就是从空气中固氮。一些人曾尝试着先用石灰和焦炭制作碳化钙,然后再让其与氮气反应生成石灰氮(氰氨化钙,CaCN2)。还有一些人则尝试着模仿闪电,利用高压电弧来促使空气中的氮气与氧气结合成一氧化氮,然后将其转换成二氧化氮,再用水或碱把它转换成硝酸或硝酸盐。但在克鲁克斯1898年发表演讲时,上述两种使用氮气生产氮肥的方法都还停留在实验研究阶段。其工业化应用则是进入20世纪之后的事。
1900年,担任莱比锡大学化学系教授,物理化学研究所所长,后来于1909年获诺贝尔化学奖的德国学者奥斯特瓦尔德(Friedrich W. Ostwald,1853-1932)决定响应克鲁克斯的号召,启动直接用氮气和氢气合成氨的研究。不过,奥斯特瓦尔德最初展开合成氨研究的动机并非是为了拯救整个人类,而是为了预防德国的硝石运输线有可能被英国海军切断的不测。当时,英国人同荷兰移民后裔布尔人为争夺在南非的领土和资源鏖战正酣,在布尔人治地内建立了强大经济和政治势力的德国无疑站在了英国的对立面。英布战争的爆发迫使奥斯特瓦尔德开始思考,万一英国与德国之间爆发全面战争,德国的粮食供应和炸药生产问题该如何解决?在奥斯特瓦尔德看来,答案非常清楚,那就是德国无论如何也要攻克用氮气和氢气合成氨的难题。
人工固氮方式之一——合成氨
此前,已有很多人从事过合成氨研究,因物理化学尚处于发展初期,人们对化学反应中的平衡与速率之类问题理解不深,故早期的合成氨研究大都没有取得实质性的进展。奥斯特瓦尔德是催化研究领域的专家。他认为合成氨的关键在于实现温度、压强和触媒之间的平衡。他在实验中发现,使用铁丝做触媒,对氮气和氢气进行加热后可获得一定量的氨。无疑这项实验研究结果令他兴奋不已。他迅速向有关部门递交了专利申请,并试图将这项技术高价卖给对人工固氮技术持有浓厚兴趣的巴斯夫公司。
巴斯夫主要是依靠生产化学染料起家的。在研制合成靛蓝染料过程中,巴斯夫逐渐组建起了一支庞大的科研队伍,并取得了多项对公司的发展至关重要的研究成果。至1899年,巴斯夫俨然已成了拥有150名科研人员的德国最大的化学公司。当时,化工行业的模仿行为非常猖獗,企业只有依靠不断创新,才能保持住自身的竞争优势。继1897年合成靛蓝染料技术开发取得成功之后,巴斯夫认为下一个主攻目标应该是含氮化学肥料。为此,巴斯夫很早就开始着手从事人工固氮研究,只不过他们最初关注的乃是电弧法和石灰氮法而已。
当奥斯特瓦尔德来到巴斯夫征询转让自己的合成氨技术的可能性时,巴斯夫表现出了浓厚的兴趣。在决定是否购买该项技术时,有关负责人让进公司还不到一年的卡尔·博施(Carl Bosch,1874-1940)对他的合成氨实验进行了追试,一开始博施并未能像奥斯特瓦尔德一样获得痕量的氨。后来,使用奥斯特瓦尔德给的铁丝做触媒,他总算合成出了一些氨。可是,之后又合成不出。通过研读文献和反复实验,博施确信,自己抽出来的氨实际上是因奥斯特瓦尔德给的铁丝曾发生过氮化反应而引起的。年轻的博施得出的结论令奥斯特瓦尔德难以接受。双方经过一番争论之后,奥斯特瓦尔德最终意识到自己用做触媒的铁丝确实有可能在做氨分解实验时使用过,这样所获得的氨就不会是氢气和氮气的反应生成物,而是氢气和氮化铁反应的结果。于是,他一气之下中止了相关专利的申请,并决定不再从事合成氨研究。
1901年前后,法国化学家勒夏特列(Henry Le Chatelier,1850-1936)也对合成氨进行了研究。不过,勒夏特列在使用铁做触媒对氮气和氢气进行合成实验时发生了爆炸。由于实验风险比较大,故勒夏特列最终放弃了用氮气和氢气合成氨的研究。尽管勒夏特列和奥斯特瓦尔德一样并没有用氮气和氢气合成出氨,但他还是于1901年把自己的部分有价值的研究成果整理出来使用外国人的名字在法国申请了一项专利。
2
哈伯从事的合成氨实验研究
虽然奥斯特瓦尔德和勒夏特列最终都放弃了用氮气和氢气合成氨的研究,但不少德国学者20世纪初仍前赴后继地展开了这项被认为深具研究价值的研究。其代表人物有能斯特(Walther H. Nernst,1864-1941)和弗里茨·哈伯(Fritz Haber,1868-1934)。能斯特1904年起担任柏林大学的物理化学教授,1920年因发现热力学第三定律而荣获当年度的诺贝尔化学奖。哈伯1898年起担任卡尔斯鲁厄(Karlsruhe)高等工科学校物理化学和电化学副教授,1906年升任教授,1919年因发明用氮气和氢气直接合成氨的方法而荣获1918年度诺贝尔化学奖。
哈伯早期主要从事电化学研究,1902年参加美国电化学学会年会期间参观了设在尼亚加拉瀑布附近的一座电弧法固氮中试工厂,并对人工固氮研究产生了兴趣。回国后,哈伯便开始着手从事电弧法固氮研究,因实验进展不够理想,故从1904年开始把研究重点转向合成氨。其契机是聘请他担任科学顾问的维也纳马古里(Margulies)兄弟公司对使用空气中的氮气制造有着广阔市场前景的氨一事颇感兴趣,并表示愿意提供相关研究资助。