1、0既不是正数,也不是负数,它是正数和负数的分界。0大于所有负数,小于所有正数。负数比较大小,不考虑负号,数字大的数反而小。
2、" "可以省略不写,"-"不能省略。
3、数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。 0左边的数都是负数,0右边的数都是正数。
二、百分数(二)知识点1、折扣:商品按原定价格的百分之几出售,叫做折扣。通称"打折"。几折就表示十分之几,也就是百分之几十。例如八折就表示十分之八,就是按原价的80﹪出售。
2、成数:"几成"就是十分之几,也就是百分之几十。三成五就是十分之三点五,也就是35%
3、应纳税额 = 总收入×税率 税率=应纳税额÷总收入 总收入=应纳税额÷税率
4、利息=本金×利率×存期
5、满100元减50元,就是在总价中取整百元部分,每个100元减去50元,不满100元的零头部分不优惠。
三、圆柱、圆锥必背公式1、在同圆或等圆内,直径的长度是半径的2倍,公式d=2r;半径的长度是直径的一半,公式r=d÷2.
2、已知直径求周长:圆的周长=圆周率×直径,公式C=πd,直径=周长÷圆周率,公式d=C÷π
3、已知半径求周长:圆的周长=2×圆周率×半径,公式C=2πr,半径=周长÷圆周率的2倍,公式r=C÷2π
4、已知半径求面积:圆的面积=圆周率×半径的平方,公式S圆 =πr2
5、已知直径求面积:圆的面积=圆周率×(直径÷2)的平方,公式S圆 =π(d÷2)2
6、圆柱的侧面积=底面的周长×高,公式S侧=Ch;圆柱的底面周长=侧面积÷高,公式C=s侧÷h;圆柱的高=侧面积÷底面周长,公式h=S侧÷C。
7、圆柱的表面积=侧面积 2×底面积,公式 S表= S侧 2S底。
8、圆柱的体积等于底面积乘以高,公式 V圆柱=Sh。圆柱的高等于体积除以底面积,公式h=v÷s;圆柱的底面积等于体积除以高,公式s=v÷h。
9、一个圆锥的体积等于与它等底等高的圆柱体积的三分之一 。圆锥体积公式:V=1 /3Sh。圆锥的高等于体积的3倍除以底面积,公式h=3v÷s;圆锥的底面积等于体积的3倍除以高,公式s=3v÷h。
10、环形的面积=大圆面积-小圆面积,S环 =πR²-πr²
11、体积和高相等的圆锥与圆柱之间,圆锥的底面积是圆柱的三倍。即圆锥的底面积=圆柱底面积×3,圆柱底面积=圆锥底面积÷3
12、体积和底面积相等的圆锥与圆柱之间,圆锥的高是圆柱的三倍。即圆锥的高=圆柱的高×3,圆柱的高=圆锥的高÷3。
四、比例必背知识点1、表示两个比相等的式子叫做比例。如:2:1=6:3
2、在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;
3、解比例 :根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。例如:3:x = 4:8,内项乘内项,外项乘外项,则:4x =3×8,解得x=6。
4、成正比例的量: 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。 用字母表示y/x=k(一定) 例如:速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
5、成反比例的量 :两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。 用字母表示x×y=k(一定) 例如:路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。
6、图上距离:实际距离=比例尺;实际距离=图上距离÷比例尺;图上距离=实际距离×比例尺
五、数学广角---鸽巢问题
1、物体数÷抽屉数=商……余数 至少数=商+1
2、只要摸出的球数比它们的颜色种数多1,就能保证有两个球同色。