3、效度分析
信度没问题后,接下来需要分析的是问卷的效度,也就是问卷设计的合理不合理,一般来说,我们基于研究目的,会设置多个题目收集意见,按统计学来说,这几个问题的线性相关会很高,所以通过因子分析后,是会被纳入一个因子成分(研究目的)上的,如果有这时候某一选择题不在这个因子成分上,说明该题目设计有问题。
4、指标聚合分析
通过效度分析后,因为我们基于研究目的,会设置多个题目收集意见,多个题目其实线性相关,表达的都是同一个看法,所以通过指标归类分析可以把这几个题目浓缩为一个整体,这时可以采用因子分析或者主成分分析进行因子归类浓缩,以便后面进行回归分析。
5、样本特征分析
将冗余的题目浓缩后,我们此时无需分析多次分析多个意见相同的题目,因此可以进行这些浓缩后因子(研究目的)的分析了,可以使用交叉分析或者对应分析,这一步就是给这些数据加上样本背景,例如不同性别对该城市生活满意度的看法等等。
6、变量相关分析
以上才算完成了全部数据的描述性统计,展示了问卷数据的看法,影响类问卷调研通常是通过线性回归分析影响关系,但是在这之前,我们需要验证纳入自变量的数据是否存在线性相关,有着相关的前提下,可以使用相关性分析,再研究回归才有意义。
7、研究假设检验分析
线性回归是将一系列影响因素和结果进行一个拟合,拟合出一个方程(非线性回归就没有方程,人脑就类似一个非线性回归),然后通过将这个方程应用到其他同类事件中,可以进行预测,所谓回归,就是向某个理想的状态或平衡状态的趋向发展,通过回归可以找出哪些影响因素,对结果的影响规律。
8、差异性分析
最后,我们还需要尽可能地对比不同人群的看法,这需要基于第一步的用户画像,现实场景下,我们收集的问卷调研群体五花八门,我们可以通过设置条件筛选的方式去尽可能分析不同人群对影响结果的看法,分析其是否存在差异,验证自己的结果是具有普适性,可以使用卡方检验、方差分析等等。
按照以上流程,就可以完成一份完整的分析报告了!