AlphaFold 2多次荣登Nature和Science封面
自AlphaFold 2问世以来,全世界数百万研究者已经在疟疾疫苗、癌症治疗和酶设计等诸多领域取得了突破。而发布于2018年的AlphaFold,论文引用量直接超过了20000次,还被授予2023年生命科学突破奖。
而AlphaFold 3的诞生,则让生物分子领域的研究拓展到了蛋白质之外。
生物可再生材料、更耐用作物的培养、药物设计和基因组学研究等等,可能将很快迎来颠覆性变革。
7PNM - 一种普通感冒病毒的突起蛋白(冠状病毒OC43):随着病毒蛋白(蓝色部分)与抗体(绿色)和单糖(黄色)相互作用AlphaFold 3对7PNM的预测结果,与真实结构(灰色)高度吻合。如果进一步了解这类免疫系统过程,我们就能更好地理解COVID-19在内的冠状病毒,改进治疗方法
输入一系列分子的信息,AlphaFold 3就能生成它们的3D结构,展示这些分子如何紧密配合。
厉害的是,它不仅能模拟蛋白质、DNA和RNA这样的大型生物分子,还能处理小分子如配体——许多药物都属于这一类。
配体与DNA结合的示例
甚至,AlphaFold 3还能模拟这些分子的化学修饰,这些修饰是细胞健康运作的关键,如果失调就可能引发疾病。
AI革命性架构——扩散模型正如之前所述,AlphaFold 3之所以如此强大,正是因为它的新一代架构和训练方式,能够覆盖所有生命分子。
也就是,颠覆整个AI世界的「扩散模型」,已经用在了AlphaFold 3的训练中。
模型的核心,就是改进后的Evoformer模块,这是一种深度学习架构,也正是是AlphaFold 2卓越性能的基石。
处理输入数据后,AlphaFold 3就可以利用「扩散网络」来构建预测结果,跟AI图像生成中使用的网络类似。
扩散过程从一个原子云开始,经过多个步骤,最终收敛于最精确的分子结构。
对于分子相互作用的预测,AlphaFold 3的精度已经超越了所有现有技术!
作为一个全面计算整个分子复合体的单一模型,它独特地能整合科学洞见。
药物设计,被彻底颠覆AlphaFold 3的这种强大功能,直接让我们的药物设计走向了新的天地!
这是因为,配体和抗体这些常用于药物的分子,现在都可以通过AlphaFold 3来预测了。
如下三个例子中,展示了AF3如何将许多蛋白质与各自的配体折叠在一起,并阐释了其作用的机制。
首先展示的是,具有独特折叠结构的蛋白质。