下面是,AlphaFold 3正确预测了一种新型抑制剂的变构结合模式(PDB ID 7QIE)。
AF3还正确预测了PORCN与LGK974和WNT3A肽的复合物,为临床阶段分子的抑制功能提供了结构依据(PDB ID 7URD)。
在预测药物相互作用上,AlphaFold 3取得了空前的准确度,无论是蛋白质与配体的结合,还是抗体与其目标蛋白的结合。
在PoseBusters基准测试中,无需任何结构信息输入,AlphaFold 3的准确性就比传统SOTA提高了50%。
由此,它也成为生物分子结构预测领域中,首个超越物理基础工具的AI系统!
如今我们能够预测抗体和蛋白质的结合,那就可以理解人类免疫反应的关键,以及新抗体的设计。
从此,我们药物设计的成功率会大大提高,还能够探索新的疾病靶点,从前针对现有靶点难以达到的创新方法,现在也能在AlphaFold 3的帮助下开发出来。
AlphaFold Server:与全世界共享的免费工具此外,谷歌DeepMind团队也会负责任地与世界共享AlphaFold 3的力量。
谷歌DeepMind会推出全球最准确的工具AlphaFold Server,用于预测蛋白质如何在细胞内与其他分子相互作用。
这是一个免费平台,允许全球科学家进行非商业性研究使用,包含免费的2亿蛋白质结构数据库。
只要几次点击,生物学家就可以利用AlphaFold 3模拟由蛋白质、DNA、RNA及各种配体、离子和化学修饰组成的结构了!
从此,科学家在实验中的研究假设,就可以由AlphaFold Server验证了。
这个平台,可谓意义重大。
实验性的蛋白质结构预测,原本需要花费读个博士学位的时间,以及数十万美元的费用。而按照当前实验结构生物学的发展速度,这本需要数亿researcher-year的工作。
有了AlphaFold 3,从此生物世界可以以高清晰度呈现。
科学家能够全面观察细胞系统的复杂性,包括结构、相互作用和修饰,药物作用、激素生成和DNA修复如何影响生物功能,从此都将被揭示。