因子分析法的数据,因子分析的详细计算步骤

首页 > 教育 > 作者:YD1662024-05-15 10:24:29

3)提取公共因子并做因子旋转

提取公共因子就是上面提到的求解函数的过程,一般求解方法有:主成分法、最大似然法、残差最小法等等。

因子旋转的原因是提取公共因子的解有很多,而因子旋转后因子载荷矩阵将得到重新分配,可以使得旋转后的因子更容易解释。常用的方法是方差最大法。

4)对因子做解释和命名

5)计算因子得分

对每一样本数据,得到它们在不同因子上的具体数据值,这些数值就是因子得分。

四、案例讲解

数据集介绍:美国洛杉矶2000年街区普查数据,共有110个街区,15个变量,变量具体情况见下表。

想分析影响不同街区下人口分布的潜在因子。

因子分析法的数据,因子分析的详细计算步骤(5)

1. 第一步:数据预处理和分析

新增“人口密度”特征,删除特征人口量、面积、经度和维度。

import pandas as pd

import numpy as np

LA_data = pd.read_csv(‘LA.Neighborhoods.csv’)

#新增人口密度,去掉人口量、面积、经度和维度

LA_data[‘density’] = LA_data[‘Population’]/LA_data[‘Area’]

LA_data_final = LA_data.drop([‘Population’,’Area’,’Longitude’,’Latitude’],axis=1)

LA_data_final_feat = LA_data_final.drop([‘LA_Nbhd’],axis=1)

因子分析法的数据,因子分析的详细计算步骤(6)

2. 第二步:因子分析——充分性检验

巴特利特P值小于0.01,KMO值大于0.6;说明此数据适合做因子分析。

因子分析法的数据,因子分析的详细计算步骤(7)

3. 第三步:因子个数确定

特征值大于1的因子数有2个,且两个因子的累计方差有68%;因此确定因子个数为2个。

from factor_analyzer import FactorAnalyzer

fa = FactorAnalyzer(LA_data_final_feat.shape[1] 1, rotation=None)

fa.fit(LA_data_final_feat)

ev, v = fa.get_eigenvalues # 计算特征值和特征向量

var=fa.get_factor_variance#给出方差贡献率

因子分析法的数据,因子分析的详细计算步骤(8)

上一页123下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.