#高二数学基础差从哪开始补?#
之前回答过高一高三基础差的话题,现在回答下高二。其实如果高二基础差,一般而言,高一就没打好底子,但是要不要从高一开始呢?我认为可以先从高二开始,否则学生心理压力过大,力不从心。
高中数学有个学习秘诀:数形结合,如果能领悟这四个字,你的数学不会太差。随便举几个例子,集合里面的文恩图,可以表示不同集合交集,并集,差集,包含关系等等。三角函数图像可以看到周期性,奇偶性,单调性,有界性等等。直线与圆,圆锥曲线如果不画图,谁能把题目做出来,哈哈哈!高三的导数又是离不开数形结合,所谓数形结合就是重点在图形,能把数学公式和图形结合起来,解决具体的数学问题。
假使现在学到高二的解析几何,从简单的直线方程开始,直线里,斜率是最重要的,斜率这个概念一直可以延伸到微积分里去,把斜率定义搞清楚,加强练习,研究斜率等于0,直线平行于x轴,斜率等于∞或者说斜率不存在,直线垂直于x轴,斜率变大,直线倾斜角变大,反过来也一样。还要对五种方程加强理解,练习,分别是一般式,点斜式,斜截式,截距式,两点式,能够从一个推出另外几个,这些都是很基本的知识,需要加强练习,根据不同问题,要灵活应用。另外,研究两条直线的位置关系,如平行,垂直,相交,位置关系与斜率的关系,重要的有两个分别是斜率相等则平行,斜率乘积等于-1则垂直。直线的夹角公式,到角公式又是一个三角函数的正切和角公式的问题,这就要与之前之前关联了,趁这个知识的学习,顺便复习巩固一下三角函数,三角函数怎么学?后面我做专题和大家讨论。夹角公式和到角公式算比较难了。直线与直线讨论完,就可以研究下点与直线关系,点在直线上,点在直线外,就看把点的坐标带入直线方程是不是成立,成立就是点在直线上,不成立,就是点在直线外,点到直线距离是一个重要的知识点,这个公式推导方法有好多种,可以都研究下,这个公式可以演化出平行直线距离公式。好了,我只是举个例子,希望对大家有用。
再次啰嗦一句:学习高中数学不二法门:数形结合!
#跟着学高中数学# #怎样学高中数学# #高中数学学习法# #高中数学分享# #高考数学之难度#