图9:不同岗位在数据流中所处的位置
PS:以上仅为示意,不同企业可根据实际状况进行调整。
因为很多同学,对数据分析师的工作非常感兴趣。这里以阿里集团为例,简单介绍一下中台数据分析师日常的工作内容。
在阿里巴巴,中台数据分析师的日常工作中,主要的交付物有6类:
- 开拓新的数据源
- 产出表资产
- 沉淀分析方法论
- 搭建与维护指标体系
- 建设与维护数据产品
- 输出商业洞察
图10:数据分析师日常工作中的主要交付物
- 开拓新的数据源:例如,信息爬取、竞对分析等。
- 产出表资产:例如,在DWD(明细数据层)的基础上,建立DWM(数据中间层)和DWS(数据服务层)的数据表。
- 沉淀分析方法论:例如,指标拆解、异常监控、因果推断等。
- 搭建与维护指标体系:例如,指标设计、指标体系建设等。
- 建设与维护数据产品:例如,指标管理系统、数据报表、数据看板、分析引擎等。
关于“临时取数需求”,好好将其归属与“数据产品”这一个工作分类下。这是因为:找分析师跑SQL取数的根本原因,在于数据产品没有建设好,或是没有建立起良性的合作机制。进而导致了各方需要“绕道”数据分析师这个“产品”来取数。
- 输出商业洞察:如分析报告等。
这里再简单介绍下其他岗位的工作:
○ 数仓工程师的主要工作包括生产与加工数据。
- 生产数据:比如埋点设计,将业务事实转化为数据落表等。
- 加工数据:比如数据治理,通过ETL的流程,保证数据的质量。或是数据架构设计,使得数据的存储、加工、调用等有保障的同时,控制成本与风险等。
○ 算法工程师的主要工作包括加工和消费数据。
- 加工数据:比如用户打标,通过算法对用户原始的数据信息进行加工,进而给用户打上标签,描述TA现在可能的状态,或是未来可能发生的行为。
- 消费数据:比如算法推荐,基于用户的历史数据,给出推荐。或是时序预测,对未来的业务状况进行预测,进而作为决策的依据。
○ 用户研究岗的工作内容涉及到生产和消费数据。
- 生产数据:比如调研问卷、焦点访谈等。
- 消费数据:比如消费者洞察报告、UI设计建议等。
其他岗位,好好在此就不一一列举说明了,因为不同的公司,对相同岗位也会有不同的职能安排。以上介绍也仅为抛砖引玉,还望有不同看法的同学,不吝赐教。
但方法是可以复用的。当你在开展工作时,可以分析一下,你所在的公司的数据流情况,以及不同的岗位,在整个数据流中承担的职责与贡献的价值。
希望以上的介绍,能让大家对数据岗的日常工作有一个简要的了解。
2
数据岗所需的知识与技能
就工作内容而言,这中台数据分析师的工作既涉及到“业务数据化”(开拓数据源、表资产),也涉及“数据业务化”(指标体系、分析方法论、数据产品、商业洞察)。所以说,所需的知识与技能是比较广域的。根据这6类工作内容,我们来逐一梳理一下数据分析岗所需的专业知识与技能:
通用的职业技能,如沟通方式与方法、时间管理、预期管理等,好好在此不多赘述。
开拓新的数据源
- 知识方面:学习搜索技能、积累公开数据源的路径、掌握竞对分析的方法论。如有余力,可以学习一些用户研究相关的知识,如调研问卷设计、访谈设计等。
- 技能方面:如有余力,掌握一些初步的爬虫技能;至少知道什么信息可以通过网页爬取的方式获得。
产出表资产
- 知识方面:学习基础的数据库相关知识。有志于更深入了解数据资产管理的同学,可以《数据中台》 与《大数据之路》为切入点。
- 技能方面:掌握SQL。在有基础编程与数据库知识打底的情况下,可以直接通过牛客的SQL题库边练边学。搜索引擎是一位很好的老师,何况工作之后也大多数时候是面向Google编程。
如果暂时还没有基础的编程知识,可以考虑通过北京理工大学,嵩天教授的《Python语言程序设计》入门。学习曲线非常适中。
沉淀分析方法论
- 知识方面:需要有一些数学/统计学的基础知识,并且掌握一些通用的逻辑思维方法,如金字塔原理等。如有余力的,可以学习一些算法模型相关的知识,如回归、分类、聚类等。
- 技能方面:掌握一些处理数据的工具,如Excel、Python等。
搭建指标体系
- 可参考之前的推文《终于有人把怎么搭建数据指标体系给讲明白了》。
- 当然最重要的,依旧是理解业务。
那么怎么理解“理解业务”这件事呢?
好好也没有想到一个非常好的形式上的定义。这里好好给一个举例式的定义:如果你是一个保险从业者,最基本的要求是知道“一张保单是如何流转的”。如果你是一个电商从业者,最基本的要求是知道“消费者从登陆到交易完成的整个链路是怎么样的”。
沉淀数据产品
- 知识方面:掌握一定的数据可视化相关的知识,在此推荐电子工业出版社出版的《数据可视化》。对于数据治理相关的知识,可以参照上文提到的《数据中台》 与《大数据之路》;如要更加深入的介入数仓建设,可参阅Kimball的《数据仓库工具箱》
- 技能方面:掌握至少一样BI看板设计工具,如FineBI等。如有余力可以学习一些产品设计原理,如尼尔森十大可用性原则等。
输出商业洞察
- 知识方面:可参照《「经营分析报告」怎么做?》。
- 技能方面:掌握一些基本的PPT制作方法,即保证一定的美观性、又提升工作的效率,最重要的是保证信息传递的有效性与高效性。当然,在实际工作中,直接套用模板是非常省事的。文末分享PPT模板,记得领取哦!
- 数据岗的核心职能:数据岗的核心职能有两个,第一,产出数据资产;第二, 提升信息的价值密度。
- 数据职能的价值:通过数据量化与驱动业务,帮助组织实现“业务数据化”与“数据业务化”。进而,建立起一个正向的闭环数据流,使得数据越用越多,越用越好。
- 数据分析岗的工作内容:① 开拓新的数据源、② 产出表资产、③ 沉淀分析方法论、④ 搭建与维护指标体系、⑤ 建设与维护数据产品、⑥ 输出商业洞察。
- 如何积累所需的知识与技能:任务驱动、目标导向。
转载/好好的数据分析师