在物理学过去的发展历史中,还原论的观点一直是物理学工作者进行研究的最基本的指导原则。它对整个学科的发展起到了巨大的推动作用,并取得了辉煌的成就。但是,以还原论为基础来研究和讨论复杂系统的合作现象时,却遇到了前所未有的挑战,从而使演生论的思想孕育而生,并成为当今物理学研究的重要指导原则。文章详细介绍了凝聚态物理学中典型的演生现象的形成和发展的历史过程,主要的研究内容和研究方法,以及所取得的重要进展。
撰文 | 张广铭 (清华大学物理系)、于渌 (中国科学院物理研究所、中国科学院理论物理研究所)
1 引言——还原论的辉煌和局限当今,对我们身边的物质世界比较流行的看法叫做还原论(reductionism),这是很多物理学家,特别是理论物理学家非常赞同的看法。而对我们学习物理学的人来说,这是一个非常基本的思维方法,即将一切复杂系统中出现的各种现象,都归结为最基本的组成单元和决定单元行为的基本规律。或者说,将复杂还原为简单,然后再从简单重建复杂 (见图1) 。回顾物理学的发展历史,从原子、分子物理学到原子核物理学,最终进入粒子物理学,处处可见还原论的踪迹:气体、液体和固体都被分解为分子或原子的聚集体;原子又被分解为原子核和电子;原子核被分解为质子和中子,而质子和中子又被分解为夸克。历史上,在每个还原阶段中呈现出的稳定的微观粒子,都曾被误认为是“基本”粒子。同时,在每一还原层次,系统特征的长度尺度迅速变小,而特征的能量尺度则急剧升高。
图1 还原论——逐本求源:宇宙从大爆炸开始产生基本粒子到原子核、原子、分子、晶体,最后到生物大分子的过程
同时,还原论的思想与大统一的过程相伴随。在19世纪中,电力与磁力由 Maxwell统一为电磁力, 光波也被并入电磁波谱。到20世纪中期,自然界中被确定的四大基本相互作用力:引力、电磁力、弱力和强力,这些力的统一问题是20世纪理论物理学的一个重要组成部分。爱因斯坦晚年的梦想,就是建立一个大统一的理论。20世纪60年代,Glashow, Weinberg和Salam 成功地将弱力与电磁力统一;到70年代,又把强力包含进去,建立了“标准模型”。但这不是描述基本相互作用的统一理论,它不包括引力,不能解释许多令人困惑的现象,诸如暗物质、中微子振荡等。还原论的最终目的是试图建立一个包罗万象的“大统一理论暠,即万事万物的理论(theory of everything)。
如果我们所考察的体系包含很少的粒子,通过理论计算预测的结果可以与实验十分一致。然而,由于数值计算的困难程度随着体系尺度的增大而指数增加,乃至在可以预计的将来无法从理论上准确预测大量粒子组成体系的性质。更重要的是,物质结构实际上可以划分为一系列的层次,各层次有其组成的“基本”粒子及其特征长度和特征能量,而且各层次之间除了一定程度的耦合外,每个层次还存在自己特有的基本规律(见图2)。由于各层次之间的这种脱耦性质,使得从简单构筑复杂并不像设想的那么容易,从而切断了粒子物理学对其他能量尺度小许多的物质结构层次的影响。因此,我们确实能够按 照古希腊人的理想把一切复杂的系统分解成最基本 的单元,并了解这些单元的行为,但是,对于复杂系统本身的丰富物理现象而言,我们却还是一无所知!
图2 物质结构被划分为一系列的层次,各层次有其组成的“基本“粒子以及其特征长度和特征能量,每个层次还存在自己特有的基本规律
2 演生现象——物理学研究的新范式早在1972年,美国著名的凝聚态理论物理学家 Philip W.Anderson 就对过分强调还原论的思想方法(有时也称为“建构论”——Constructionism)提出质疑。他在美国《科学》杂志上发表了一篇文章,题目叫 More is different[1],中文翻译过来就是:“多者异也”。文章非常深刻地指出,“将万事万物还原成简单基元及其基本规律的能力,其实并不蕴含着从这些规律出发重建整个宇宙的能力...... 当面对尺度与复杂性的双重困难时,以还原论为基础的建构论的假定就完全崩溃了。其结果是,大量基本粒子构成的巨大复杂聚集体的行为并不能依据少数粒子的性质,做简单的外推就能理解。取而代之的是,在每一个复杂性的发展层次之中,都会呈现出全新的物理概念、物理定律和物理原理,要理解这些新行为所需要做的研究,就其基础性而言,与其他研究相比,毫不逊色”[1]。这就是说,由大量基元(agent)构成的复杂体系在每一不同的聚集层次,都会呈现出许多预想不到的全新复杂物理性质,这些性质已经远超出组成基元的物理学规律(见图3)。按照这种看法,物理学所做的研究工作,重要的是承认这些客观的现实,以它为依据,找出它的基本规律,理解这些全新现象是如何“emerge”出来的。
图3 随着特征能量尺度或温度的不断降低,凝聚态物理体系不 断呈现出新奇的量子现象
“Emerge”的名词形式“emergence”,目前尚无公认的译法,曾被翻译成“层展”或“呈展”。根据 emerge 在生物学中有“演化“的含义,加之它所描述的性质又是“从无到有”的,把它译成“演生“似乎更为恰当。一个多世纪以来,生物学家推测,生命是从无生命物质在没有上帝或其他因素干预下,“偶然地”(如达尔文所说)“演生“出来的。实际上,进化生物学家们把整个的生物进化过程看成是由比较简单的对象到比较复杂对象的演化。这里所指的“演生”是由于尺度变化 所导致的新特性,这类现象在生命体系中是层出不穷的。在一定意义上说,“多者异也“就是把演生的概念应用到研究物理问题并加以推广”[2]。
有关演生现象还有另外一个值得注意的特点, 即从非常简单的相互作用之中展示出复杂的结构。让我们从一滴水说起,这是日常生活中大家都非常熟悉的事情。一滴水有多少个分子很容易算出来,2mm 直径的水滴,算一下它的体积,乘上阿伏伽德罗常数,除上18,差不多是10^20个水分子。从日常生活当中大家都有经验,水在正常的大气压下被加温到100°C时,就变成蒸汽,蒸汽升高到天空中形成彩云。同样,一滴水在正常的大气压下降温到0°C 的时候会结成冰,冰的晶体是非常漂亮的(见图4)。相变是演生现象最具代表性的例子,一滴水这样一个简单模型系统中出现的合作现象可以说明在复杂性方面我们可以走得很远[3]。L.P.Kadanoff 在 1991 年曾撰文指出,“在自然世界中观察到结构的丰富性并不是物理定律复杂性的结果,而是由极其简单的定律多次重复应用而产生的“。这里单个的水分子结构没有改变,相互作用也不变,为什么 10^20个水分子,会“集体地”、“不约而同地“从一个相变到另外一个相? 新的相在老的相中是如何孕育、如何形成的? 不要说10^20个水分子,就是100个人,要有秩序地从一个门走出去,还得需要大家自觉地遵守纪律,一个一个地走出才行。为什么10^20个水分子,可以那么集体地、不约而同地、很默契地做这件事情?