如果有人问起,太阳是固态、液态还是气态?相信有不少人会认为,太阳应该是气态的,毕竟构成太阳的物质主要是氢和氦,而据我们所知,氢和氦通常都是以气体的形式存在的。然而这个答案却是错误的,科学家告诉我们,无论是固态、液态还是气态,太阳都不是,实际上,太阳是另一种状态——等离子态。
为了方便理解,我们不妨用水这种常见的物质来举例说明,我们都知道,水的状态与温度密切相关,在低温环境中,水表现为固态,温度较高时,水则表现为液态,而当温度上升到一定的程度,水就会表现为气态。
从微观层面来看,水的温度其实就是大量水分子的热运动的激烈程度,这可以理解为水分子平均动能的大小,在低温环境中,水分子的平均动能很小,所以水分子之间的作用力占据了上风,在这种情况下,水分子基本上就只能在固定位置振动,因此表现为固态。
当温度较高时,水分子的平均动能也会增加,所以它们的“活动范围”就更大,可以相对自由地移动或旋转,但由于水分子之间的作用力在这种状态下依然不可小觑,它们仍然会明显受到周围其他水分子的影响,因此它们此时就表现为液态。
而当温度上升到一定的程度时,水分子的平均动能就完全占据了上风,而分子间作用力则变得很弱,水分子的“活动范围”也因此变得很大,此时水分子的热运动就会变得快速、混乱和无序,没有稳定的相对位置,进而在整体上表现为气态。
水分子是由两个氢原子和一个氧原子构成,它们通过一种被称为“共价键”的化学键结构在一起,当温度进一步升高时,水分子内部的“共价键”就会被破坏,这一过程也被称为“离解”,在“离解”发生之后,水分子就不复存在,代替它们的则是以氢原子和氧原子构成的原子气体。
正如我们所知,原子也是有内部构造的,简单来讲就是原子是由原子核以及围绕着原子核运动的电子构成,而电子之所以会被束缚在原子核周围,一个重要的原因就是原子核带正电荷,电子则带负电荷,它们会互相吸引。
当温度上升到足够高的时候,原子内部的电子就会拥有足够高的动能,进而摆脱原子核的束缚,这一过程也被称为“电离”(即电子离开原子核)。