摘要:结合煤矿井下供电系统的特点,以6kV供电回路作为监控对象,设计了煤矿井下变电所高压供电监测系统,可实现对高压配电开关的电压、电流、温度的实时监控。
关键词:供电系统;数据采集;监控系统
0引言
电力是煤矿井下重要的动力来源,由于井下工作环境恶劣,端线、挤压短路、过负荷、漏电等故障时有发生,在这些故障发生之前,在高压配电开关处往往会伴随着一系列的征兆,包括电压电流的急剧变化、温度的上升等。
本文设计的高压供电监控系统可以将这些特征量实时上传至井上监控中心,减少故障发生的概率,当故障发生时可快速定位,提高排除故障的工作效率,进而减少因电力系统的故障造成的财产损失。通过地面计算机的控制,可以实现对开关的分、合闸操作,提高供电系统管理的水平。供电监控系统和供电系统相对独立,当监控系统出现故障时,不会对高压供电系统产生影响,但可以实现对高压供电系统的实时监测和控制。
1高压供电监控系统结构设计
1.1结构设计
煤矿井下供电监控系统的结构图如图1所示,整个系统结构为DCS型(集散型)分布式计算机监控,分为地面监控站和井下监控站,两者之间采用RS-485通信方式,各个井下变电站负责对本变电站监控信息的采集,采集的数据存放在井下变电站的控制器缓存区中,当地面变电站向井下变电站发出访问指令时,各个井下变
图1煤矿井下供电监控系统结构
电站发送自己缓冲区的所有数据,地面变电站可以将井下监测数据实时显示在软件监控界面,并可以根据情况向井下变电站发出分、合闸操作指令。
1.2通信方式选择
煤矿井下的常用的通信方式有:RS-485、CAN总线、RS-232、光纤通信、Zigbee组网等方式,为了简化供电监控系统的结构在地面计算机和井下变电站之间的通信方式,选择为带光电隔离的RS-485,其接线方式为2线制,可传输距离为1500m,可以满足井上PC到井下变电站的距离要求,通过光电隔离技术增强信号的抗干扰性。数据采集器到变电站的距离较近,可以采用RS-232通信方式,其接线方式为3线制,可传输距离为15m。
2系统硬件设计
2.1主控芯片选型
系统选用MSP430F5438单片机,它是TI公司推出的一款具有256KiB存储容量的嵌入式微控制器。它的特点是具有极低的功耗,只需2.2~3.6V的直流供电。在低功耗基础上集成更加丰富的外设,即有3个16位定时器、1个高速12位模/数转换器、UART、SPI和12C串行通信、WDT看门狗定时器、Pl ̄P10端口等,该芯片可以应用于模拟和数字传感器系统,系统主要利用MSP430F5438,可以实现采煤机电气控制器的主要功能,并可降低系统功耗。
2.2完全隔离型RS-485电路设计
在井下变电站和井上监控平台之间的通信方式选择为RS-485,芯片选行为ADM2587E,该芯片是ADI推出的单电源供电的隔离型芯片,SOW ̄20封装,传输速率为500Kibit/s,隔离电压2.5kV,被广泛应用在工控、电力等需要隔离RS-485的场合。
完全隔离型RS-485电路原理图如图2所示,为了降低线路中的共模电压、雷击、浪涌电压等对通信的干扰,在总线处采
图2完全隔离型RS-485电路
取的保护措施如下:在VA、VB管脚上串接RT电阻。该电阻的阻值范围是4~10Ω,VA、VB管脚对地接TVS管,也可以采取电阻和稳压二极管串联的方式进行连接。
2.3RS-232通信电路设计
在井下变电站和数据采集器之间的通信方式选择为RS-232,该种方式可以选择的传输速率范围是从50bit/s到38400bit/s,可以实现双工异步通信,在接线中保留TXD、RXD、GND3条线。
在井下变电所的高压供电监控系统中,利用MAX3232ESE实现TTL和RS-232之间的电平转换,设计电路如图3所示,其中RX1、TX1接单片机的串口,RX232 ̄1、TX232 ̄1分别数据采集器的RS-232专用串口,进行数据传输。同时,为了增加系统的扩展性,预留一路串口,方便以后硬件结构的升级。
图3RS-232通信电路原理
2.4测温电路设计
高压配电开关的温度测量传感器选型为DS18B20芯片,实时采集开关低压腔体内部的温度,并将温度信息实时上传给井上监控中心。
DS18B20的温度读取主要通过对其DQ引脚读、写高低电平的时序来实现,为了增加DS18B20的驱动能力,在DS18B20的DQ引脚上增加一个上拉电阻,保证在所有的读、写过程中被可靠置高或者置低,电路原理如图4所示。温度读取过程中,主要由初始化时序、读时序、写时序。所有时序都是将主机作为主设备,单总线器件作为从设备,而每一次命令和数据的传输都是从主机主动启动写时序开始,如果要求单总线器件回送数据,在进行写命令后,主机需启动读时序完成数据接收。