瑞利-金斯公式是不可积的。随着频率的增大谱密度单调地增加,这当然与现实不符。1910年艾伦菲斯特把瑞利-金斯公式在高频部分的失效称为紫外灾难,这都是普朗克给出正确表达式10年以后的事儿了——紫外灾难的说法对黑体辐射研究连一毛钱的价值都没有。这个说法是遗腹子型的,1910年时瑞利-金斯公式早因普朗克的工作而过时了(…was fixed posthumously, because by 1910 the Raleigh–Jeans formula had long been rendered obsolete by Planck’s work)。有趣的是,在此后的许多书本里紫外灾难仍被津津乐道,愚以为除了人们热衷怪力乱神的心理因素以外(同样泛滥的还有薛定谔的猫,海森堡不确定性原理),一个可能的原因是以后理论物理中还源源不断地涌现各种在变量足够大时发散的无脑理论。宇宙没有无穷,宇宙也没有矛盾。我们在物理理论中看到的无穷与自相矛盾都是人构造物理时遭遇的无奈。
1905年,金斯在文章指出以太和物质不可能达到热平衡(Jeans published a paper in the Philosophical Magazine which showed the impossibility of the ether reaching thermal equilibrium with matter)实际是经典理论的无力[James Jeans, A Comparison between Two Theories of Radiation, Nature 72, 293-294(1905)]。金斯在反对能量量子化多年后,于1910年成了量子不连续性的拥趸[James Jeans, On Non-Newtonian Mechanical Systems, and Planck's Theory of Radiation, Philosophical Magazine 20, 943-954 (1910)]。金斯不放弃这个公式有他的道理,那时候整个物理学界对普朗克的公式还没理解(its full significance not appreciated)。这方面的科学史研究可参见Rob Hudson, James Jeans and radiation theory,Studies in History and Philosophy of Science, part A, 20(1), 57-76 (1989)。又,爱因斯坦的传记作者Abraham Pais建议把
称为Rayleigh–Einstein–Jeans law (Abraham Pais, Subtle is the Lord, Oxford University Press (1982) p.403)。
接下来的故事许多人耳熟能详。Rubens在德国物理学会报告其测量结果之前,于1900年10月7日到普朗克家串门,和普朗克进行了交流(Als am Sonntag, dem 7. Oktober 1900 Rubens mit seiner Frau bei Planck einen Besuch machte, kam das Gespräch auch auf die Messungen, mit denen Rubens beschätigt war),说谱分布的长波部分和瑞利公式符合,当晚普朗克就给出了那个幸运地猜到的公式。1900年10月19日,普朗克在Kurhbaum之后报道了他的理论工作,即关于黑体辐射谱分布函数及其推导。1900年10月25日,Rubens和Kurlbaum详细报道了他们完整的实验数据,接着由Thiesen,Wien,Rayleigh,Lummer & Jahnke, 以及Planck分别报告了五家各自提出的谱分布函数。Rubens和Kurlbaum认为普朗克的分布函数和实验结果符合得最好,Kurlbaum 还给出了初步的普朗克常数值h~6.55×10-34J·s [H. Rubens, & F. Kurlbaum, Über die Emission langwelliger wärmestrahlen durch den schwarzen Körper bei verschiedenen Temperaturen (不同温度下黑体热辐射长波的发射), Sitz. d. k. Akad. d. Wiss. zu Berlin, 929-931 (1900)]。Lummer和Pringsheim 基于他们的测量结果也持同样的观点。这样,到了1901年底,普朗克公式(形式上)胜出。持续四十年的找寻关于黑体辐射的基尔霍夫普适函数一事算是尘埃落地了。然而,一场物理学的大戏,才算刚刚拉开了大幕。
任何一个事件的完美结局,必然是更微妙事件的揭幕。
5 普朗克谱分布公式的三种推导及其影响
普朗克(Max Planck,1858-1947)生于基尔一个学术之家,其祖父是哥廷恩大学的神学教授、父亲是基尔大学的法学教授,后者于1867年转入慕尼黑大学任教。1874-1879年间,普朗克在慕尼黑大学和柏林大学修习物理 (图15)。在慕尼黑大学开始学习初等物理时,普朗克跟随的是Philipp von Jolly教授, 那个认为物理学只有一些洞洞要修修补补的教授,因而他不鼓励普朗克学物理。普朗克回答说他没想做出什么新发现,只是想学会那些基础物理[Alan P. Lightman, The discoveries: great breakthroughs in twentieth-century science, including the original papers, Alfred A. Knopf (2005)]。这期间普朗克做过的实验是研究氢在白金体材料中的透过行为,是为了证明世界上确实存在半透的墙,这也是他唯一的实验物理经历。普朗克1877年转往柏林大学,师从基尔霍夫和亥尔姆霍兹,于是进入热力学研究领域,更重要的是接触到了Berlin circle {记住,还有那个闻名于世的Viena circle}。那时候克劳修斯刚引入熵概念不久[Rudolf Clausius, Die Mechanische Wärmetheorie(热的力学论), Frierich Vieweg und Sohn (1887)],这对普朗克的职业塑造有重要的影响。普朗克1879年的学位论文题目为Über den zweiten Hauptsatz der mechanischen Wärmetheorie(论热的力学理论中的第二定律),1880年的Habilitationsschrift[7]题为Gleichgewichtszustände isotroper Körper in verschiedenen Temperaturen(不同温度下各项同性物体的平衡态)。由此可见,普朗克对黑体辐射研究以及未来的统计物理奠基性工作是有学术传承的。特别提一句,普朗克编辑(edit, bearbeiten)了克劳修斯的两本书、基尔霍夫的三本书,他的热力学功底之因与果皆在此。
图15. 少年普朗克
普朗克1899年从另一种途径,即基于麦克斯韦分布,推导得到了维恩谱公式,其关于机理的假设属于ad hoc(专门针对此事的、将就的)的那种,但竟然得到了维恩谱公式,那维恩公式不能简单地就是个错误。陶渊明“此中有深意,欲辨已忘言”说不定是普朗克那时的心境。他没有放弃。
1900 年10月7日,Rubens到普朗克家串门,这吸引了普朗克对新获得的相当完美的黑体辐射谱分布测量数据的关注。据说,当晚普朗克就给出了那个幸运地猜到的(erratene)公式。也不能说完全是瞎猜,普朗克至少是个知道 (xInx-x)'=Inx 的著名物理学家,而这个公式在凑黑体辐射谱分布中扮演关键角色。普朗克于1900 年10月19日发表第一篇相关文章,给出了黑体辐射谱分布的正确函数,此即为普朗克定律(Plancks Gesetz)或普朗克分布;1900 年12月14日发表的第二篇文章则是给出了该公式的统计物理推导。普朗克似乎对由自己的工作所引出的一些结论和发展难以接受,日后进行了长达十年多的思想挣扎。
关于普朗克的生平与这段工作,可参阅如下文献:
- Ingo Müller,Max Planck – a life for thermodynamics,Annalen der Physik 17(2-3), 73-87 (2008); Ingo Müller, Ein Leben für Thermodynamik, Physik Journal 7 (3), 39-45 (2008).(两个语种的版本)
- Ian D. Lawrie, A unified grand tour of theoretical physics, Adam Hilger (1990).
- Ta-Pei Cheng, Einstein’s Physics: Atoms, Quanta, and Relativity-Derived, Explained, and Appraised, Oxford University Press (2013).
如下普朗克的工作有助于理解他关于黑体辐射工作的内在逻辑。
- Max Planck, Über den zweiten Hauptsatz der mechanischen Wärmetheorie (热的力学理论中的第二定律), Ackermann (1879).(博士学位论文)
- Max Planck, Gleichgewichtszustände isotroper Körper in verschiedenen Temperaturen, Ackermann (1880). (讲师资格申请报告)
- Max Planck, Über das Prinzipo der Vermehrung der Entropie, Annalen der Physik, Leipzig 30, 562-582; 31,189-203; 32,462-503(1887).
- Max Planck, Über den Beweis des Maxwellschen Geschwindigkeitsvertheilungsgesetzes unter Gasmolekülen, Sitz. Berich. bayer.. Akad. Wiss 24, 391-394(1894).
- Max Planck, Max Planck,Über irreversible Strahlungsvorgänge, Sitz. Berich. Preuss. Akad. Wiss, 57-68(1897); 715-717(1897); 1122-1148(1897); 449-476(1898); 440-480(1899).
- Max Planck, Über eine Verbesserung der Wienschen Spectralgleichung (维恩谱方程的改进), Verhandlungen der Deutschen Physikalischen Gesellschaft 2, 202-204(1900).
- Max Planck, Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum (标准谱能量分布律理论), Verhandlungen der Deutschen Physikalischen Gesellschaft 2,237-245(1900).
- Max Planck, Entropie und Temperatur strahlender Wärme(辐射热的熵与温度), Annalen der Physik 306 (4), 719-737(1900). (这是Wien用过的论文题目)
- Max Planck, Über irreversible Strahlungsvorgänge(不可逆辐射过程),Annalen der Physik 306 (1), 69-122(1900).
- Max Planck, Über das Gesetz der Energieverteilung im Normalspektrum(标准谱能量分布律), Annalen der Physik 4(3), 553-563(1901).
- Max Planck, Treatise on Thermodynamics, A.Ogg (transl.), Green & Co.(1903).
- Max Planck, Vorlesungen über die Theorie der Wärmestrahlung(热辐射理论教程), Johann Ambrosius Barth(1906). 英文版为The Theory of Heat Radiation,M. Masius (transl.), 2nd edition, P. Blakiston's Son & Co.(1914).
- Max Planck, Zur Hypothese der Quantenemission(量子发射假设), Berl. Ber., 723-731(1911).
- Max Planck, Eine neue Strahlungshypothese(一个新的辐射假设), Verhandlungen der Deutschen Physikalischen Gesellschaft 13, 138-148(1911).
- Max Planck, Über die Begründung das Gesetzes des schwarzen Strahlung(论黑体辐射规律的基础), Annalen der Physik 37(4), 642-656(1912).
- Max Planck, La loi du rayonnement noir et l'hypothèse des quantités élémentaires d'action(黑体辐射定律与作用量子假设), In P. Langevin, E. Solvay, M. de Broglie (eds.), La Théorie du Rayonnement et les Quanta, Gauthier-Villars (1912) pp.93-114.
- Max Planck, Über das Gleichgewicht zwischen Oszillatoren, freien Elektronen und strahlender Wärme(论振子、自由电子和辐射热之间的平衡), Sitz. Berich. Preuss. Akad. Wiss, 350-363(1913).
- Max Planck, Vorlesungen über die Theorie der Wärmestrahlung(热辐射理论教程), 2. Auflage, J. A. Barth(1913).
- Max Planck, Eight Lectures on Theoretical Physics, A. P. Wills (transl.), Dover Publications(1915).
- Max Planck, Vorlesungen über Thermodynamik(热力学教程), De Gruyter (1922).
- Max Planck, Die Energieschwankunger bei der Superposition periodischer Schwingungen(周期振荡叠加的能量涨落), Sitzungsberichte der Preuß.Akad. Wiss., 350-354(1923).
- Max Planck, Über die Natur der Wärmestrahlung(热辐射的本质), Annalen der Physik 378, 272-288(1924).
- Max Planck, Das Weltbild der neuen Physik(新物理学的世界观), Vortrag 18. Februar 1929, Physikalisches Institut der Universität Leiden.
- Max Planck, Zur Geschichte der Auffindung des physikalischen Wirkungsquantums(物理作用量子的发现史),Naturwissenschaften 31(14–15), 153-159(1943).
- Max Planck, Vom Wesen der Willensfreiheit und andere Vorträge(自由意志的实质以及其他报告), Fischer (1990).
Max Planck, Die Ableitung der Strahlungsgesetze: Sieben Abhandlungen aus dem Gebiete der elektromagnetischen Strahlungstheorie(辐射定律推导), Auflage 4, Harri Deutsch Verlag (2007).
先写出来的,这一切放在一起就好理解了。普朗克因此成了统计力学、量子力学和相对论的奠基人。一个保守主义者,做出的都是惊天的成就,有革命性的色彩,难怪被称为Revolutionär wider Willen(违背意愿的革命者)。普朗克博士毕业后的研究深受克劳修斯的影响, 而克劳修斯是熵概念的提出者啊[Rudolf Clausius, Die Mechanische Wärmetheorie (热的力学理论)[8],Vieweg (1876)]。普朗克选择Eletrodynamik und Thermodynamik(电动力学和热动力学)作为自己的研究对象。Eletrodynamik,Thermodynamik,都是Dynamik,有啥好区分的。电动力学和热动力学的结合是黑体辐射研究的一个关键点,这一点对普朗克们来说是显而易见的。可惜,把Thermodynamik翻译成“热力学”时字面上就错失了这一点。普朗克中学时期就熟读克劳修斯的著作,而克劳修斯留下的两本书就是力学观的热理论和电的力学处理(Die mechanishce Behandlung der Electricität, Vieweg, 1879),热通过光同电磁学建立起了联系。普朗克 1878年起研究不可逆过程,自1891年起因为受赫兹的麦克斯韦理论启发开始将热力学用于电磁过程。有评价认为,Planck hat nicht aus Nichts geschaffen(普朗克不是从“不(没有)”中创造的),有意思。
普朗克1900年的第一篇文章完全是接着维恩的工作,从辐射的温度与熵的关系入手。注意维恩1894年文章的题目就是温度与辐射熵,这两篇的文章题目相同。这里的思路是,热辐射达到平衡的过程是个熵增加到最大值的过程,则要求熵对内能的二阶微分为负。形式上