耦合器的工作原理动画图片,摩擦耦合器原理动画

首页 > 经验 > 作者:YD1662022-10-28 21:20:14

为什么这很重要?因为一个电路上的电压尖峰和噪声不会破坏或干扰另一个电路。因此,我们的电路受到保护。由于内部的半导体材料,它们也将只允许电子沿一个方向流动。

由于分离,这两个电路因此可以使用不同的电压和电流。我们可以通过向电路二的输出添加其他组件(例如晶体管)来扩展设备的功能。这使我们能够控制更高的电压和电流并自动化电路控制。

它是如何工作的?

光耦合器有多种变体,但本文将坚持使用基本的光电晶体管版本。当我们查看这个光耦合器的符号时,我们看到左侧有一个 LED 符号,右侧的符号看起来非常类似于晶体管,这是因为它是被称为光电晶体管的晶体管的改进版本。端子被命名为集电极和发射极,就像普通晶体管一样,只是我们缺少基极引脚。

耦合器的工作原理动画图片,摩擦耦合器原理动画(5)

在普通的晶体管电路中,我们有主电路和控制电路。晶体管阻止主电路中的电流,因此灯熄灭。当我们在管脚上施加一个小电压时,这将打开晶体管并允许电流在主电路中流动,因此主灯打开。

顺便说一下,我们在上一篇文章中详细介绍了晶体管的工作原理,请单击此处。

光耦合器内的晶体管的工作原理略有不同。它还可以阻止主电路中的电流,但它充当接收器。当 LED 发出的光照射到晶体管上时,这将打开它并允许电流在主电路中流动。

耦合器的工作原理动画图片,摩擦耦合器原理动画(6)

因此,当电路 1 完成时,LED 亮起。这会发出一束光,它击中晶体管。晶体管检测到这一点并打开,允许电流在电路 2 中流动。我们通过打开和关闭内部 LED 来简单地控制它。光电晶体管就像一个绝缘体,阻止电流流动,除非它暴露在光线下。

LED 和晶体管都封装在外壳内,所以我们看不到它们,但我们可以看到它们如何与这些简单的电路一起工作,我们将在本文后面进行介绍。

那么LED是如何开启晶体管的呢?在光电晶体管内部,我们有不同的半导体材料层。有N型和P型,夹在一起。N型和P型均由硅制成,但它们都与其他材料混合以改变其电气特性。N 型已与一种材料混合,这为其提供了许多额外的和不需要的电子。这些可以自由移动到其他原子。P 型已与另一种电子较少的材料混合。所以,这有很多电子可以移动的空白空间。

耦合器的工作原理动画图片,摩擦耦合器原理动画(7)

当材料连接在一起时,会形成电势垒并阻止电子流动。但是,当 LED 开启时,它会发出另一种称为光子的粒子。照片击中 P 型材料并将电子撞击到势垒上并进入 N 型材料。第一个势垒处的电子现在也能够进行跳跃,因此产生了电流。一旦 LED 关闭,光子就会停止撞击电子越过势垒,因此次级侧的电流停止。

因此,我们可以仅使用一束光来控制次级电路。

这是因为半导体材料。在普通电线中,铜是导体,橡胶是绝缘体。电子可以很容易地流过铜,但它们不能流过橡胶绝缘体。看一下金属导体的基本模型,我们在中心有一个原子核,周围有许多轨道壳层,这些壳层包含电子。每个壳层拥有最大数量的电子,一个电子需要一定量的能量才能被每个壳层接受,离原子核最远的那些能量最大。

最外层的壳称为价壳,导体的价壳中有 1 到 3 个电子。电子由原子核固定在适当的位置,但还有另一个称为导带的壳层。如果一个电子可以到达这个导带,那么它就可以脱离原子并移动到其他原子。

对于金属原子,例如铜,价壳层和导带重叠,因此电子很容易脱离并移动到另一个原子。使用绝缘体时,最外层的外壳被挤满,几乎没有空间供电子加入。原子核紧紧抓住电子,而导带距离很远,因此电子无法到达导带以逃逸。因此电流不能流过这种材料。但是,半导体则不同,它的价壳层中的电子太多,无法成为导体,因此它的作用类似于绝缘体。但是,导带非常接近,所以如果我们给电子提供一些外部能量,一些电子就会获得足够的能量,从而跳入导带并变得自由。所以,

耦合器的工作原理动画图片,摩擦耦合器原理动画(8)

上一页1234下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.