神舟十号与天宫一号交会对接。来源:CCTV
2、从单航天器到组合体
对接需要几步?
作为两飞行器完成机械连接并形成刚性组合体的物理过程,对接主要包括三个步骤。
(1)接触、接纳和几何位置校正。
前文说到了交会飞行中为了消除误差而进行的轨道修正。交会飞行完成时,飞船和空间站的位置、相对速度、相对姿态、角速度都是一致的,也就是说,对正了。但偏差仍然存在。因此,两个飞行器的对接机构相互接触后,第一件事就是消除初始偏差,让双方的机械装置相互接纳,并且校正相互的位置关系,实现完完全全的“对正”。这个动作,类似拧螺钉时先对准螺孔的扶正动作。
地球上造房子常常用到我国传统的榫卯结构。仔细观察可以发现,榫的头部略细,而卯的入口稍宽,空间对接的接触面构造类似更加精密的榫卯,通过特殊的几何导向特征,让两个航天器对接机构越接近、越对正,从而严丝合缝、你中有我我中有你地结合在一起。这种接纳和校正形式有杆锥组合、环锥组合以及外窄内宽的导向瓣组合,我们常见的螺钉头和螺孔边缘就是一对锥面组合,而导向瓣则如两只岔开手指的手相互插合。
位置校正之后,为了使两个航天器的相对关系不再变化,捕获机构将在此时“抓住”对方,使彼此不再脱开。
俄罗斯的杆锥式对接机构。来源:ESA
(2)缓冲并消耗碰撞能量。
高速飞行的大质量航天器,即使以较小速度相互接触,冲击能量也是相当可观的。飞船和空间站中至少一方需要配置缓冲和耗能装置,减缓冲击过载,耗散或吸收撞击能量。
弹簧阻尼和液压伺服机构是自始至终随着对接技术发展而不断演化的缓冲形式,电磁阻尼装置的研究也在近年兴起。自适应电磁装置可以将捕获与缓冲耗能的工作合一,更突出的优点是由于其加入了主动控制环节,可以实现低冲击捕获,并通过电磁参数的调整控制适应更大范围的对接飞行器质量及对接初始条件。
实际工程中,缓冲阻尼系统只在飞船的对接机构上安装,称为“主动对接机构”。空间站安装无缓冲系统的“被动对接机构”。这样做的好处在于,空间站一侧没有复杂机构,有利于长期飞行;飞船一侧虽然机构复杂,但由于工作寿命较短,设计和在轨维护的难度不大。
神舟八号飞船上的缓冲阻尼系统。来源:新华社
(3)机械连接
两个航天器接触的碰撞能量被缓冲、吸收之后,两对接端面被拉近、靠拢,然后通过机械锁系刚性连接为一体。除了要保证足够的连接刚度和承载能力,对于载人航天器,还要实现两航天器间的密封,以保证人员能够通过两个航天器的对接通道往来。与缓冲系统的配置原则类似,飞船一侧通常配置橡胶密封圈,空间站一侧配置金属密封面。
对接后的舱段环境连通,经历了一个有趣的发展过程。载人航天器第一代对接机构瞄准突破交会对接技术,没有考虑密封舱段连接。换句话说,对接机构是“实心”且固定的。1969年1月16日,苏联的联盟-4号和联盟-5号飞船成功实施人类首次载人交会对接后,航天员通过出舱才到达“隔壁房间”。后来的第二代杆锥式对接机构设计为对接后可翻转拆卸的形式。再后来,出现了周边式对接机构——机构按环形布局,中间能开舱门,主被动对接机构对接后即形成了对接通道,能构建直接连通两飞行器的密封舱环境。
联盟四号、五号对接艺术图。来源:Russianspacenews
至此,两航天器结构固连合一形成组合体,电路、液路可连通,载人环境贯通,“1 1=1”的物理基础已全部具备。
同时,飞船作为天地往返的运输工具和非永久对接的飞行器,在任务结束后需要可靠分离。因此,对接锁系能上锁也能解锁,必须是可以逆向运动的机构。为了确保分离可靠性,有些对接机构在锁系上配置了火工品,以便在发生故障时将连接部位“炸开”。
通常情况下,弹簧机构提供分离的动力,这使两飞行器具备一定的初始分离速度。弹簧机构的设计要点是确保长期压缩后仍能保证稳定的分离力,并且辅以导向机构,使两飞行器的相对角速度足够小,以平动的形式安全分离。