论证思路:这种做法是结合已知和结论,运用综合法,通过倍长线段,实现将倍分关系转化为相等关系从而同时解决了数量和位置关系。
方法二:(构造平行模型1)如图6,过点C作AB的平行线,交DE的延长线于点F ,仍然证两个三角形全等,得平行四边形从而得出结论.
设计分析:这两种做法是学生比较容易想到的,而且出现的辅助线图形一样,但一样的图却有不一样的说法。它们通过倍长线段或作平行将倍分关系转化为相等关系,其本质是一样的,都是最终转化为平行四边形来解决问题.另外为学生今后证明线段平行积累了一种重要方法:要证平行,不仅可以依据角的数量关系,还可以依据平行四边形的性质来解决.
方法三:(倍长中线模型2)如图7,延长DE至点F,使EF=DE,连接DC,AF,CF,
论证思路:构造平行四边形ADCF,从而进一步得到四边形DBCF为平行四边形,定理得证。
设计分析:前三种方法的实质都是将三角形问题转化为平行四边形来解决.上个单元研究平行四边形时是用三角形知识解决的,而今天我们又利用了平行四边形的知识解决了三角形的问题,体会相互转化的数学思想方法。
方法四:(构造平行模型3)如图8,取BC的中点F,连接EF并延长FE至点G,使EG=EF,连接AG。
论证思路:证△AGE≌△CFE,和四边形ADEG、四边形DBFE分别为平行四边形,最后得出结论.
设计分析:这种做法其实和方法一的实质是相同的.更复杂的原因是重新构造了一条中位线EF,从而证得的是EF//AB,且。,此时关于中位线和第三边的关系直接得到证明。
方法五:(构造平行模型4)如图8,过点A作AG//BC,过点E作EF//AB,交BC于点F,交AG于点G,得到平行四边形ABFG。
论证思路:易证△AEG≌△CEF,另证四边形ADEG和四边形DBFE分别为平行四边形,从而定理得证。
设计分析:方法呈现之后,引导学生对五种方法进行比较,辅助线、思考问题方式、证明方法的不同,体会到各种证明方法的本质都是将三角形的问题转化为平行四边形的问题来解决.
(二)论证视角:古书的精华,先人的智慧
在数学教学过程中我们可以适当培养学生追本逐源,探究问题来源,刨根问底的优良数学品质,而考察问题的本源和发展历史是最行之有效的方法。《九章算术》和《几何原本》是古代中西方数学史上的两个重要代表作品,接下来我们来看看两大著作对三角形中位线的论证。
方法六:(欧几里得之“面积法”)古希腊数学家欧几里得在其著作《几何原本》中,证明三角形中位线定理的方法是:将线段之间的关系转化为三角形面积之间的关系,再将三角形面积之间的关系转化为直线的位置关系[3]。
如图9,在△ABC中,点D、点E分别是线段AB、线段AC的中点,连结BE和DC,因AD=BD,AE=EC,故,于是得故得DE//BC。另一方面,因为
方法七:(刘徽的“割补法”)我国魏晋时期数学家刘徽在《九章算术注》中通过割补法的来推导三角形中位线定理,其方法是:连接两腰中点(中位线),过顶点作中位线的垂线,将中位线上方的小三角形分割成两个小直角三角形,分别将它们补到相应位置(图10),得到一个矩形,故矩形的长为原三角形的底,则中位线与底边平行,且等于底边的一半[3]。
问题:(触类旁通)
1、观察图10,你还有其它类似的方法吗?(如图11利用割补法构造矩形)
2、如果不是做高线,而是在DE上取任意点H,连接AH,你能借用刘徽的割补法来证明吗?(如图12构造平行四边形)
在教学中融入中位线定理的历史证明方法,学生在追寻历史足迹的过程中,可以感受数学学科深厚的文化底蕴,感受中西方数学家为数学学科发展做出的卓越贡献,近代教科书中还出现了“同一法”“反证法”等,因篇幅原因不做扩展。
用多种方法来论证三角形的中位线定理,不仅能够巩固所学到的认知,通过一题多解,分析比较,观察方法之间的差异性,能够培养学生的创造性思维。一题多解其精华不在于“多”而在于归纳。我们在发散思维之后观察到我们的解法可以分成同质异形和异质同形两类。比如在论证中发现不同的构造方法实质都是将三角形问题转化为平行四边形的问题,这就是“同质异形”;同样的构造方法不同的思维角度,这就是“异质同形”。引导学生将上述的证法进行对比、归纳让学生吃透题型从而学会举一反三.
三、古题新做固认知:知识的巩固过程
三角形的中位线定理最早在古籍中出现是用于土地分割问题。在古巴比伦泥版上的故事:在古代两河流域,有四位兄弟幸福和睦地生活着,而父亲去世打破了四兄弟平静的生活,他们为分割父亲留下的一块土地而争论不休,谁都不肯吃亏。已知土地为三角形形状,请你利用所学的数学知识设计土地分割方案,并给出方案的理论依据,以此说服四兄弟接受方案[4]。