4.利用形心,纵坐标或横坐标比较明显的情况下,分母表示L的周长容易求的情况下,考虑此法。
有关第一型曲线积分的题型一般用上述四种方法即可求解,比较简单。
2.对于第二型曲线积分,其物理意义是变力沿曲线做功。
由于是变力(有大小也有方向)和曲线,所以在计算过程中要注意方向。相对于第一型曲线积分是对弧长(只有正)的线积分,而第二型曲线积分则是对坐标(有正有负)的线积分。
第二型曲线积分定义和性质如下:
计算方法有如下几种,具体题目依据其已知情况选用组合不同方法。
【直接法是通过变量参数化后计算定积分,起点为下限,终点为上限】
【注:使用格林公式需要:L需要满足光滑封闭正向曲线,正向:如果是单连通区域,逆时针为曲线正向,如果是复连通区域,则外圈逆时针,内圈顺时针。总而言之,内圈外圈都要满足你在“跑步时”,左手是靠在积分区域内侧。可以画图理解:箭头方向为正方向,左手均靠在区域(阴影部分)内侧。 P(x,y),Q(x,y)在区域内有一阶连续偏导数,即区域内没有瑕点(无定义点),满足以上两个条件才能用格林公式。如果:曲线非闭合,则补线闭合后再用格林公式,如果存在瑕点,则挖去瑕点变成复连通区域再用格林公式】