指数函数的三种基本性质,指数函数性质归纳

首页 > 经验 > 作者:YD1662022-11-02 08:09:09

一、前言(废话)

之前已经学习了指数与指数幂的运算,以及相关的指数运算性质(如果有不懂的读者,可以往前面去翻看一下),今日作者正式就开始讲指数函数以及相关的性质。

二、指数函数

指数函数其实就是之前学习的一个推广,当底数大于零,可以将指数的取值范围从指数推广到了实数,这就形成了指数函数的形成,对此只有看数学界的定义了。

在此之前有两个前提:

  1. 指数函数的底数大于零。
  2. 指数函数的底数不能等于一。

数学界指数函数的定义:

一般地,函数

指数函数的三种基本性质,指数函数性质归纳(1)

编辑 搜图

请点击输入图片描述

只要形式上,符合上图的函数形式,则这种函数就是叫做指数函数。其中x是自变量,并且函数的定义域是R。

三、指数函数的性质

由指数函数的形式可以得出,指数函数的底数要求大于零,并且不等于一,这就让定义域划分为了两部分:

指数函数的三种基本性质,指数函数性质归纳(2)

指数函数的三种基本性质,指数函数性质归纳(3)

由于底数的取值范围,造就了两个区间,因此当底数0<a<1时,函数是一个单调递减的函数,当底数a>1时,函数是一个单调递增的函数。

以其中的a>1作为讨论,指数函数也是函数,既然是函数就按照函数的相关性质进行讨论,在这之前要先说明指数函数的定义域: x∈R

  1. 指数函数的第一个性质就是单调性,由图可知,指数函数的单调性由a的取值范围决定的,当a>1时,指数函数是单调递增函数,当0<a<1时,指数函数是单调递减函数。
  2. 函数第二个性质就是奇偶性,但从图像上看,并没有奇偶性,就不讨论了。
  3. 函数第三个性质就是周期性,同理,从图像上看,也是没有周期性,也不做讨论了。
  4. 函数第四个性质就是对称性,从图像上看,也没有对称性,也就不讨论了。

这就是从函数的性质上面进行讨论的,除此之外就需要从指数函数自身的性质进行讨论了。

  1. 指数函数的所有的图像都过一个定点(0,1),即x=0时,y=1
  2. 第二个专属性质就是单调性由a的取值范围决定的。

批注:

读者有什么不懂的可以留言,想要知道什么高中解题经验可以给作者留言啊!

关注!关注!关注!重要事情说三遍

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.