功率因数表校准方法,功率因数表超前了怎么调整

首页 > 经验 > 作者:YD1662022-11-04 00:52:41

A图是最好的,这时Vds刚好下降到零时来驱动信号,实现了比较好的ZVS效果;B图可以看到VDS无法下降到零,说明MOS管在关断时的激磁电流过小,无法将输出电容的能量完全抽走,所以需要增加关断时的谐振电流,可以通过减小变压器激磁电感来实现;C图是可以实现ZVS,但是死区时间过大,VDS电压又起来了,这个时候也会有开通损耗,所以需要减小死区时间。D图虽然也可以实现ZVS,但是死区时间还是过长,我们需要把死区时间减短一点,达到和A图一样的效果。

现在来看MOS管体二极管的影响:

功率因数表校准方法,功率因数表超前了怎么调整(17)

这里的td是上下两个MOS管的死区时间,可以看到VGS,H信号变为低电平,L端Q1开关管两端的VDS电压会下降,此时下管Q2的输出电容Coss的能量被抽走,能量全部被抽走之后呢,Q2的体二极管导通;经过死区时间td之后,下管Q2的VGS,L信号由低变高,实现了ZVS,此时一小段时间电流依然为负,电流会同时走体二极管和沟道;当电流由负变为正之后,二极管反向偏置,电流的走向从MOS管的漏极到源极;然后当Q2的驱动信号VGS,L由高变低之后,此时下管Q2的输出电容Coss充电,上管Q1的输出电容Coss放电,为上管Q1实现ZVS创造条件。

因此,我们总结在选择MOS管时,要关注的三个比较重要的参数:

功率MOS管的死区时间Td,MOS管开通时的最大电流Id,max,以及下管Q2关断时的电流Id,off。其中死区时间和关断电流是实现ZVS的关键参数。

我们知道,当MOS管导通时,功率MOS管的导通电流与导通电阻Rdson的乘积就是功率MOS管的导通压降,如果这个压降太低或者没有正向电流,体二极管不能完全反向恢复或者进入反向恢复。当对应的MOS管开通时,电路会因为反向恢复电流的高di/dt而产生一个非常高的电压尖峰,从而可能损坏功率MOSFET。

在半桥LLC在启动时,对体二极管的影响也比较大。

功率因数表校准方法,功率因数表超前了怎么调整(18)

在启动前,谐振电容Cr和输出电容Coss刚好是处于完全放电的状态。与正常工作状况相比,在启动过程中,这些空电容会使低端MOS管Q2的体二极管深度导通。因此流过开关Q2体二极管的反向恢复电流非常高,致使当高端MOS管Q1导通时,引起桥臂直通问题,Q1和Q2都会流过非常大的反向恢复尖峰电流,进而会产生比较高的尖峰电压。启动状态下,在体二极管反向恢复时,非常可能发生功率MOSFET的潜在失效。

现在我们来看一下过载情况下体二极管的影响。

功率因数表校准方法,功率因数表超前了怎么调整(19)

这个是不同负载下半桥LLC谐振变换器的直流增益特性曲线。根据不同的工作频率和负载可以分为三个区域。右边是感性工作区域,可以实现功率MOS的ZVS,粉红色区域是ZCS区域,谐振电路的阻抗为容性,会出现电流超前于电压的情况。当在过载模式下,LLC的工作模式会从正常的感性区域移动到异常的容性区域,并且串联谐振变换器特性成为主导。这个时候开关电流增加,ZVS消失。ZCS最严重的缺点是开通时为硬开关,失去了软开关特性,这样会导致二极管反向恢复应力,此外还会增加开通损耗,产生严重的噪声或EMI。

当使用的MOSFET体二极管的反向恢复特性较差时,二极管关断会伴随非常大的dv/dt,因此在很大的di/dt条件下,会产生很高的反向恢复电流尖峰。这些尖峰会比稳态开关电流幅值大十倍以上。这个大电流会使MOSFET损耗大大增加、发热严重,极端情况下会损坏MOSFET,使整个电源系统失效。

另外一种更恶劣的情况是输出短路:

功率因数表校准方法,功率因数表超前了怎么调整(20)

上一页12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.