文章来源:音频应用。
扬声器的组成
一般人大多会把音响设备中发出声音的方盒子称为「喇叭」,另一个较专业的用语则会称之为「扬声器」(Loudspeaker)。既然名为扬声器,就代表它在音响设备中所担负的工作是「发出声音」。这个发声的过程,需经由许多小部件共同运作而成,「单体」就是在盒子中发出声音、通常是黑色的、看起来有点像眼睛的圆形体,同时也是整套音响发声的起点。那我们就从单体构成的原理开始,来了解扬声器的点点滴滴。
每一个扬声器中必定藏有单体,单体是扬声器作动的最重要元件,而根据单体发声方式的不同,可分为动圈式、电感式、静电式、平面振膜式、铝带 式等等。目前市面上所看到的扬声器,95%皆採用 「动圈式」。
动圈式单体的设计最早出现在 1887 年,当时并不普及,直至一战后,电影事业蓬勃发展,无声电影渐衰,有声电影兴起,扬声器的需求大为增加。相较于其他种类的单体,动圈式单体发展时间长, 相关制造及投入厂商众多,至今仍是最普遍的单体形式。
声音是如何被我们听见的呢?
「磁电效应」赋予动圈单体生命
单体运作原理
1819 年,丹麦物理学教授厄斯特(Hans Ørsted, 1777-1851)意外发现,一条通有电流的导线竟会使附近的磁针产生偏转,意味著载有电流的导线周围会产生感应磁场,且感应磁场的方向会随著电流的流向不同而改变。这个物理史上的重大发现即为「电流的磁效应」,也是动圈式单体运作的基本原理。
动圈式单体的运作力量,来自于单体中间的永久磁铁与音圈。当音圈通上电流方 向不断改变的讯源后,音圈的周围会产生方向不断变动的感应磁场,这个感应磁场 与永久磁铁所生成的磁场交互作用,时而互相排斥,时而互相吸引,进而使音圈上 下运动。
有关载流音圈在磁场中的受力方向,可用「佛莱明左手定则」简单地判别。图 B 截取图 A 音圈与磁铁的一小段来作说明,大拇指代表导线运动的方向,食指代表永久磁铁的磁场方向(由 N 指向 S),而中指则代表电流方向。当电流的方向为出纸 面时(如图 B 所示),线受力向上运动;当电流的方向为入纸面时,导线则会受力 向下运动。
由此可知,随著电流方向不停地改变,音圈会依电流反向的频率上下往复运动, 而与音圈相连的振膜也会跟著上下运动,进而推动空气产生疏密波,进而发出声 音。电流方向变化的频率越快,所发出的声音频率也会越高,这就是动圈式单体运 作的方式。
频率定位 各有专业表现
了解动圈式单体作动的原理之后,更进一步来讨论不同种类的单体。
辨别其差异,但在听不见的范围中,人们还是可以透过身体或其它的感官,感受 到声音的存在。例如:当大批动物跑过草原,站在远方地面上的人,会先感受到地 面的震动,才看到跑过眼前的动物、听见跑过时的嘈杂声,因此人类的五感是彼此 影响,进而促成脑中所出现的感受,这是一个複杂的生理运作过程,而追寻愉悦的 路上,正需要了解自己对五感的需求。
市面上多以「频率」来区分动圈式单体,常见的种类如以下:
1. 超低音单体:工作范围大约在 15 赫兹到 200 赫兹。
30 赫兹以下人耳不容易听见,但身体会感受到。像电影中出现的地震场面,或是火箭发射的震撼感,超低音拥有足够的量感及衝击力,能让听者获得相当大的满足感。
2. 低音单体:工作范围大约在 30 赫兹到 3k 赫兹。
一般而言,低音单体需要较大的体积才能产生较好的表现,作动出厚实的低 音,因此低音单体的直径多在 8 吋以上,又以 12 吋或 15 吋最为普及,常见于 KTV、舞台等宽阔的场所。
3. 中音单体:工作范围大约在 200 赫兹到 4k 赫兹之间。
中音域是分佈在人耳最敏感并且讯源集中的区域,中音单体的发声表现往往能够做到逼真还原,音色乾淨有力,且让人感受到强烈的节奏性。
4. 高音单体:工作范围大约在 2k 赫兹到 20k 赫兹之间。
讯源中的乐器,像是小提琴、吉他等等的乐器都包含了泛音,所以高音单体通常都必须设计成 20k 赫兹才行。
5. 超高音单体:通常是指超过人耳听觉上限 20k 赫兹的高频,工作范围大约在 4k 到 40k 赫兹。
像是海豚、蝙蝠所发出的声波就是超高音。不过既然人耳听不到,为什麽还需 要超高音呢?那是因为超高音虽然听不到,但有助于定位,且让音场更为宽阔。现在的音乐格式例如 SACD,取样频率已经远远超过 20k 赫兹,如果想完整 呈现音乐内容并单就高频作提升,加装单独的超高音喇叭就是简单又立即的方法之一。
另外还有二种单体的组成形式,这二者因为外观都是一个单体组成的扬声器,有不少人会将这二者搞混:
同轴单体:
採取複合式的设计,先经过分音器将音频分成二音路(Coaxial)或三音路 (Triaxial),同轴是将高音与中/低音单体,装置在同一个单体中,由于採用同一条轴心线,因此称为「同轴」。採用同轴设计单体的好处是,因二/三音路单体共用相同的轴心,需在振膜面上重合,因物理定位接近同点的声源,所以重新演绎音乐之音场定位表现更为理想。
全音域单体:
所谓全音域(Full-Range)是以一个单体,涵盖大部份的频率表现。因为没有经 过分音器,也没有声音的损耗、频率被分割与相位的问题,所以高低频到耳朵的时间一致。其强项在于中频的表现,曲线平顺自然,适合长时间聆听,人声、乐器的定位准确,可以听到音乐演奏的微小细节,因为只有一个振膜发出声音,且高低音音色一致,是全音域单体的一大特色。
单体部件材料形状定大局
在动圈式单体中,每一项元件都会影响该单体的表现,以下将针对不同元件的 材质及形状进行更详细的介绍,希望透过这些原理的说明,让您了解单体发声 时的奥秘。
振膜形状决定音域
还记得小时候用两个养乐多空瓶,在瓶底挖洞后绑上一条线,就可以和朋友说悄悄话的游戏?振膜原理即类似如此,其制成材料及制作时的工艺技巧等,都会大大影响单体的发声品质。而振膜的材料与形状,也会影响单体发声时的状况,振膜的材料选择多元,从纸盆、陶瓷、羊毛到聚丙烯、金属、 木质等,每种材质皆有其特色及优缺点,可以依照每个人听音乐的习惯及喜好来做选择。
此外,振膜的形状也会影响单体在高低音输出时的表现,或是发声时指向性的强弱。在形状上,可分为锥形、平板、球顶等四种。