乘坐缆车顺着斜井前往地下700米的实验大厅。 新京报记者 张璐 摄
悠长深邃的斜井中管道密布,作业的风机在呼呼作响。行至斜井深处,空气变得湿漉漉的,地面上出现了少量顺势而下的水流。“斜井刚开挖到100多米时,就出现地下涌水情况,随着隧道越挖越深,斜井最大涌水量达530立方米/小时。”这与勘查单位此前勘探时发现的最大180立方米/小时的涌水量有较大偏差。
为了避免地下水不断涌出淹没作业面,建设人员采用了“超前探水灌浆”的施工工艺。他们沿着作业面在岩石上打九、十个孔,灌入水泥浆并掺入水玻璃使其加快凝固。水泥浆沿着岩体裂隙,将地下水封堵在30米开外的地方。建设人员开挖掘进25米后,预留5米作为保护层,继续循环打孔注浆。地下水当然也不能完全堵住,以防水压太大把洞压垮。在隧道两侧,每隔几百米留有临时集水井,部分地下水顺着隧道凹槽流入井中,被水泵抽排到地面。1265.16米长的斜井隧道就这样被一点点挖了出来。
地下施工支洞顶拱渗水。中科院高能物理所供图
“地下水的压力非常大,甚至可以将钻机中实心钻杆顶歪,如果固定不牢,钻杆在水压作用下会像箭一样回射出来。”据现场从事基建工作的阎良平介绍,在地质情况如此复杂的情况下使用“超前探水灌浆”的施工工艺,水泥浆配比、注浆量、注浆压力等参数都需要重新摸索改进。经过反复实践并改进配比,他们终于找到了最优方法。
为了通向地下实验大厅,工程还建设了一口竖井,深达564.2米,直径只有5.5米,由于不像斜井一样可以攀爬,工作人员施工时要坐着“铁桶”吊下去、提上来。
“变形金刚塔”与“钢铁铠甲”
缆车到达了井底,这里的岩石温度达到31摄氏度,空气闷热,地面湿滑。步行向下走了几百米,汗流浃背的记者终于来到地下实验大厅的门口。
进入洁净间之前,所有人需要穿上洁净衣、罩住头发、戴上手套和鞋套、经过风淋室吹淋。风淋室的大门向上开启,像置身于科幻电影中一样,一个巨大的钢球和一个通天钢塔直观地矗立在记者眼前。
液压升降平台好似“变形金刚塔”,全程服役于有机玻璃球的安装。中科院高能物理所供图
“我们正处在一个巨大坑洞的坑底,实验大厅高71米,跨度达49.5米,是目前国内跨度最大的地下洞室,内有44米深的水池。”阎良平说,地下大厅没有一根立柱支撑,为了防止塌陷,穹顶和洞室四周布满锚索,锚索深深扎入岩体,像拧紧的螺栓一样对岩石施加预应力,将岩石牢牢固定住。
未来,江门中微子实验的中心探测器——球形液体闪烁体探测器将浸泡在地下实验大厅内44米深的水池中央,它由直径41米的不锈钢网壳、直径35.4米的有机玻璃球,以及2万吨液体闪烁体、2万只20英寸光电倍增管、2.5万只3英寸光电倍增管等关键部件组成。
颇具美感的巨大“钢球”,就是中心探测器的主支撑结构——不锈钢网壳,它为其内部与之间隔2米的有机玻璃球穿上了“钢铁铠甲”。液压升降平台可谓“变形金刚塔”,它的直径和高度逐层可变,全程服役于有机玻璃球的安装。
从水池顶端俯瞰不锈钢网壳全貌。中科院高能物理所供图
未来,探测器建成后,容纳探测器的水池将“封盖”,探测器将“不见天日”地运行30年。为了抓住难得的机会看看探测器内部结构,记者手脚并用,在仅能容纳一人的狭窄钢梯通道上攀爬起来。实验大厅的空调使这里的温度保持在21摄氏度,但爬上12层楼高的平台后,记者额头已经微微冒汗。
支撑有机玻璃球和各种仪器设备的“钢球”,使用了大约900吨低放射性的不锈钢材料。“相比碳钢,不锈钢比较软,很难得到需要的刚度和精度,价格也昂贵。但钢球要泡在水中30年,所以还是得用不锈钢。”王贻芳说,为了保证实验大厅的洁净度,同时确保不变形,整个钢结构没有一处焊接,科研人员用12万套高强螺栓将不锈钢构件拼接成型。
最大的玻璃球
实验探测器的研制有三个技术挑战,其一就是研制世界上最大的有机玻璃容器。
在大钢球内,有机玻璃球的安装刚刚开始。工程人员揭开覆盖物,晶莹剔透的玻璃板露出光彩。“这是目前已知的最干净、透明的有机玻璃,肉眼就能明显看出它和普通有机玻璃的区别。”王贻芳流露出自豪的神情,他说,为了达到透明度的指标,生产厂家新建了生产线,对各种材料成分进行了改进,生产工具、模具也进行了特殊的处理。
有机玻璃球厚12厘米,但对于直径35.4米的玻璃球来说,12厘米薄如蛋壳。科研人员准备了265块球形有机玻璃板,最大的一块9米长、3米宽,它们将被分层逐一粘接,拼成玻璃球。粘接材料不是普通的胶水,而是有机玻璃本体材料。