图5.4.2 基础底面外边缘线至坡顶的水平距离示意
5.4.3 建筑物基础存在浮力作用时应进行抗浮稳定性验算,并应符合下列规定:
1 对于简单的浮力作用情况,基础抗浮稳定性应符合下式要求:
Gk/Nw,k≥Kw [5.4.3]
式中:Gk——建筑物自重及压重之和(kN);
Nw,k——浮力作用值(kN);
Kw——抗浮稳定安全系数,一般情况下可取1.05。
2 抗浮稳定性不满足设计要求时,可采用增加压重或设置抗浮构件等措施。在整体满足抗浮稳定性要求而局部不满足时,也可采用增加结构刚度的措施。
6 山区地基
6.1 一般规定
6.1.1 山区(包括丘陵地带)地基的设计,应对下列设计条件分析认定:
1 建设场区内,在自然条件下,有无滑坡现象,有无影响场地稳定性的断层、破碎带;
2 在建设场地周围,有无不稳定的边坡;
3 施工过程中,因挖方、填方、堆载和卸载等对山坡稳定性的影响;
4 地基内岩石厚度及空间分布情况、基岩面的起伏情况、有无影响地基稳定性的临空面;
5 建筑地基的不均匀性;
6 岩溶、土洞的发育程度,有无采空区;
7 出现危岩崩塌、泥石流等不良地质现象的可能性;
8 地面水、地下水对建筑地基和建设场区的影响。
6.1.2 在山区建设时应对场区作出必要的工程地质和水文地质评价。对建筑物有潜在威胁或直接危害的滑坡、泥石流、崩塌以及岩溶、土洞强烈发育地段,不应选作建设场地。
6.1.3 山区建设工程的总体规划,应根据使用要求、地形地质条件合理布置。主体建筑宜设置在较好的地基上,使地基条件与上部结构的要求相适应。
6.1.4 山区建设中,应充分利用和保护天然排水系统和山地植被。当必须改变排水系统时,应在易于导流或拦截的部位将水引出场外。在受山洪影响的地段,应采取相应的排洪措施。
6.2 土岩组合地基
6.2.1 建筑地基(或被沉降缝分隔区段的建筑地基)的主要受力层范围内,如遇下列情况之一者,属于土岩组合地基:
1 下卧基岩表面坡度较大的地基;
2 石芽密布并有出露的地基;
3 大块孤石或个别石芽出露的地基。
6.2.2 当地基中下卧基岩面为单向倾斜、岩面坡度大于10%、基底下的土层厚度大于1.5m时,应按下列规定进行设计:
1 当结构类型和地质条件符合表6.2.2-1的要求时,可不作地基变形验算。
表6.2.2-1 下卧基岩表面允许坡度值
地基土承载力特征值ƒak(kPa) | 四层及四层以下的砌体承重结构,三层及三层以下的框架结构 | 具有150kN和150kN以下吊车的一般单层排架结构 | |
带墙的边柱和山墙 | 无墙的中柱 | ||
≥150 | ≤15% | ≤15% | ≤30% |
≥200 | ≤25% | ≤30% | ≤50% |
≥300 | ≤40% | ≤50% | ≤70% |
2 不满足上述条件时,应考虑刚性下卧层的影响,按下式计算地基的变形:
sgz=βgzsz [6.2.2]
式中:sgz——具刚性下卧层时,地基土的变形计算值(mm);
βgz——刚性下卧层对上覆土层的变形增大系数,按表6.2.2-2采用;
sz——变形计算深度相当于实际土层厚度按本规范第5.3.5条计算确定的地基最终变形计算值(mm)。
表6.2.2-2 具有刚性下卧层时地基变形增大系数βgz
h/b | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 |
βgz | 1.26 | 1.17 | 1.12 | 1.09 | 1.00 |
注:h—基底下的土层厚度;b—基础底面宽度。
3 在岩土界面上存在软弱层(如泥化带)时,应验算地基的整体稳定性。
4 当土岩组合地基位于山间坡地、山麓洼地或冲沟地带,存在局部软弱土层时,应验算软弱下卧层的强度及不均匀变形。
6.2.3 对于石芽密布并有出露的地基,当石芽间距小于2m,其间为硬塑或坚硬状态的红黏土时,对于房屋为六层和六层以下的砌体承重结构、三层和三层以下的框架结构或具有150kN和150kN以下吊车的单层排架结构,其基底压力小于200kPa,可不作地基处理。如不能满足上述要求时,可利用经检验稳定性可靠的石芽作支墩式基础,也可在石芽出露部位作褥垫。当石芽间有较厚的软弱土层时,可用碎石、土夹石等进行置换。
6.2.4 对于大块孤石或个别石芽出露的地基,当土层的承载力特征值大于150kPa、房屋为单层排架结构或一、二层砌体承重结构时,宜在基础与岩石接触的部位采用褥垫进行处理。对于多层砌体承重结构,应根据土质情况,结合本规范第6.2.6条、第6.2.7条的规定综合处理。
6.2.5 褥垫可采用炉渣、中砂、粗砂、土夹石等材料,其厚度宜取300mm~500mm,夯填度应根据试验确定。当无资料时,夯填度可按下列数值进行设计:
中砂、粗砂 0.87±0.05;
土夹石(其中碎石含量为20%~30%) 0.70±0.05。
注:夯填度为褥垫夯实后的厚度与虚铺厚度的比值。
6.2.6 当建筑物对地基变形要求较高或地质条件比较复杂不宜按本规范第6.2.3条、第6.2.4条有关规定进行地基处理时,可调整建筑平面位置,或采用桩基或梁、拱跨越等处理措施。
6.2.7 在地基压缩性相差较大的部位,宜结合建筑平面形状、荷载条件设置沉降缝。沉降缝宽度宜取30mm~50mm,在特殊情况下可适当加宽。
6.3 填土地基
6.3.1 当利用压实填土作为建筑工程的地基持力层时,在平整场地前,应根据结构类型、填料性能和现场条件等,对拟压实的填土提出质量要求。未经检验查明以及不符合质量要求的压实填土,均不得作为建筑工程的地基持力层。
6.3.2 当利用未经填方设计处理形成的填土作为建筑物地基时,应查明填料成分与来源,填土的分布、厚度、均匀性、密实度与压缩性以及填土的堆积年限等情况,根据建筑物的重要性、上部结构类型、荷载性质与大小、现场条件等因素,选择合适的地基处理方法,并提出填土地基处理的质量要求与检验方法。
6.3.3 拟压实的填土地基应根据建筑物对地基的具体要求,进行填方设计。填方设计的内容包括填料的性质、压实机械的选择、密实度要求、质量监督和检验方法等。对重大的填方工程,必须在填方及计前选择典型的场区进行现场试验,取得填方设计参数后,才能进行填方工程的设计与施工。
6.3.4 填方工程设计前应具备详细的场地地形、地貌及工程地质勘察资料。位于塘、沟、积水洼地等地区的填土地基,应查明地下水的补给与排泄条件、底层软弱土体的清除情况、自重固结程度等。
6.3.5 对含有生活垃圾或有机质废料的填土,未经处理不宜作为建筑物地基使用。
6.3.6 压实填土的填料,应符合下列规定:
1 级配良好的砂土或碎石土;以卵石、砾石、块石或岩石碎屑作填料时,分层压实时其最大粒径不宜大于200mm,分层夯实时其最大粒径不宜大于400mm;
2 性能稳定的矿渣、煤渣等工业废料;
3 以粉质黏土、粉土作填料时,其含水量宜为最优含水量,可采用击实试验确定;
4 挖高填低或开山填沟的土石料,应符合设计要求;
5 不得使用淤泥、耕土、冻土、膨胀性土以及有机质含量大于5%的土。
6.3.7 压实填土的质量以压实系数λc控制,并应根据结构类型、压实填土所在部位按表6.3.7确定。
表6.3.7 压实填土地基压实系数控制值
结构类别 | 填土部位 | 压实系数 | 控制含水量(%) |
砌体承重及框架结构 | 在地基主要受力层范围内 | ≥0.97 | ωop±2 |
在地基主要受力层范围以下 | ≥0.95 | ||
排架结构 | 在地基主要受力层范围内 | ≥0.96 | |
在地基主要受力层范围以下 | ≥0.94 |
注:1 压实系数(λc)为填土的实际干密度(ρd)与最大干密度(ρdmax)之比;ωop为最优含水量;
2 地坪垫层以下从基础底面标高以上的压实填土,压实系数不应小于0.94。
6.3.8 压实填土的最大干密度和最优含水量,应采用击实试验确定,击实试验的操作应符合现行国家标准《土工试验方法标准》GB/T 50123的有关规定。对于碎石、卵石,或岩石碎屑等填料,其最大干密度可取2100kg/m3~2200kg/m3。对于黏性土或粉土填料,当无试验资料时,可按下式计算最大干密度:
ρdmax=η[ρwds/(1+0.01wopds)] [6.3.8]
式中:ρdmax——压实填土的最大干密度(kg/m3);
η——经验系数,粉质黏土取0.96,粉土取0.97;
ρw——水的密度(kg/m3);
ds——土粒相对密度(比重);
ωop——最优含水量(%)。
6.3.9 压实填土地基承载力特征值,应根据现场原位测试(静载荷试验、动力触探、静力触探等)结果确定。其下卧层顶面的承载力特征值应满足本规范第5. 2.7条的要求。
6.3.10 填土地基在进行压实施工时,应注意采取地面排水措施,当其阻碍原地表水畅通排泄时,应根据地形修建截水沟,或设置其他排水设施。设置在填土区的上、下水管道,应采取防渗、防漏措施,避免因漏水使填土颗粒流失,必要时应在填土土坡的坡脚处设置反滤层。
6.3.11 位于斜坡上的填土,应验算其稳定性。对由填土而产生的新边坡,当填土边坡坡度符合表6.3.11的要求时,可不设置支挡结构。当天然地面坡度大于20%时,应采取防止填土可能沿坡面滑动的措施,并应避免雨水沿斜坡排泄。
表6.3.11 压实填土的边坡坡度允许值
填土类型 | 边坡坡度允许值(高宽比) | 压实系数(λc) | |
坡高在8m以内 | 坡高为8m~15m | ||
碎石 、卵石 | 1:1.50~1:1.25 | 1:1.75~1:1.50 | 0.94~0.97 |
砂夹石(碎石、卵石占全重30%~50%) | 1:1.50~1:1.25 | 1:1.75~1:1.50 | |
土夹石(碎石、卵石占全重30%~50%) | 1:1.50~1:1.25 | 1:2.00~1:1.50 | |
粉质黏土,黏粒含量 ρc≥10%的粉土 | 1:1.75~1:1.50 | 1:2.25~1:1.75 | |
6.4 滑坡防治
6.4.1 在建设场区内,由于施工或其他因素的影响有可能形成滑坡的地段,必须采取可靠的预防措施。对具有发展趋势并威胁建筑物安全使用的滑坡,应及早采取综合整治措施,防止滑坡继续发展。
6.4.2 应根据工程地质、水文地质条件以及施工影响等因素,分析滑坡可能发生或发展的主要原因,采取下列防治滑坡的处理措施:
1 排水:应设置排水沟以防止地面水浸入滑坡地段,必要时尚应采取防渗措施。在地下水影响较大的情况下,应根据地质条件,设置地下排水系统。
2 支挡:根据滑坡推力的大小、方向及作用点,可选用重力式抗滑挡墙、阻滑桩及其他抗滑结构。抗滑挡墙的基底及阻滑桩的桩端应埋置于滑动面以下的稳定土(岩)层中。必要时,应验算墙顶以上的土(岩)体从墙顶滑出的可能性。
3 卸载:在保证卸载区上方及两侧岩土稳定的情况下,可在滑体主动区卸载,但不得在滑体被动区卸载。
4 反压:在滑体的阻滑区段增加竖向荷载以提高滑体的阻滑安全系数。
6.4.3 滑坡推力可按下列规定进行计算:
1 当滑体有多层滑动面(带)时,可取推力最大的滑动面(带)确定滑坡堆力。
2 选择平行于滑动方向的几个具有代表性的断面进行计算。计算断面一般不得少于2个,其中应有一个是滑动主轴断面。根据不同断面的推力设计相应的抗滑结构。
3 当滑动面为折线形时,滑坡推力可按下列公式进行计算(图6.4.3)。
Fn=Fn-1ψ+γtGnt-Gnntanφn-cnln [6.4.3-1]
ψ=cos(βn-1-βn)-sin(βn-1-βn)tanφn(6.4.3-2)
式中:Fn、Fn-1——第n块、第n-1块滑体的剩余下滑力(kN);
ψ——传递系数;
γt——滑坡推力安全系数;
Gnt、Gnn——第n块滑体自重沿滑动面、垂直滑动面的分力(kN);
φn——第n块滑体沿滑动面土的内摩擦角标准值(°);
cn——第n块滑体沿滑动面土的黏聚力标准值(kPa);
ln——第n块滑体沿滑动面的长度(m);

图6.4.3 滑坡推力计算示意
4 滑坡推力作用点,可取在滑体厚度的1/2处。
5 滑坡推力安全系数,应根据滑坡现状及其对工程的影响等因素确定,对地基基础设计等级为甲级的建筑物宜取1.30,设计等级为乙级的建筑物宜取1.20,设计等级为丙级的建筑物宜取1.10。
6 根据土(岩)的性质和当地经验,可采用试验和滑坡反算相结合的方法,合理地确定滑动面上的抗剪强度。
6.5 岩石地基
6.5.1 岩石地基基础设计应符合下列规定:
1 置于完整、较完整、较破碎岩体上的建筑物可仅进行地基承载力计算。
2 地基基础设计等级为甲、乙级的建筑物,同一建筑物的地基存在坚硬程度不同,两种或多种岩体变形模量差异达2倍及2倍以上,应进行地基变形验算。
3 地基主要受力层深度内存在软弱下卧岩层时,应考虑软弱下卧岩层的影响进行地基稳定性验算。
4 桩孔、基底和基坑边坡开挖应采用控制爆破,到达持力层后,对软岩、极软岩表面应及时封闭保护。
5 当基岩面起伏较大,且都使用岩石地基时,同一建筑物可以使用多种基础形式。
6 当基础附近有临空面时,应验算向临空面倾覆和滑移稳定性。存在不稳定的临空面时,应将基础埋深加大至下伏稳定基岩;亦可在基础底部设置锚杆,锚杆应进入下伏稳定岩体,并满足抗倾覆和抗滑移要求。同一基础的地基可以放阶处理,但应满足抗倾覆和抗滑移要求。
7 对于节理、裂隙发育及破碎程度较高的不稳定岩体,可采用注浆加固和清爆填塞等措施。
6.5.2 对遇水易软化和膨胀、易崩解的岩石,应采取保护措施减少其对岩体承载力的影响。
6.6 岩溶与土洞
6.6.1 在碳酸盐岩为主的可溶性岩石地区,当存在岩溶(溶洞、溶蚀裂隙等)、土洞等现象时,应考虑其对地基稳定的影响。
6.6.2 岩溶场地可根据岩溶发育程度划分为三个等级,设计时应根据具体情况,按表6.6.2选用。
表6.6.2 岩溶发育程度
等 级 | 岩溶场地条件 |
岩溶强发育 | 地表有较多岩溶塌陷、漏斗、洼地、泉眼 |
岩溶中等发育 | 介于强发育和微发育之间 |
岩溶微发育 | 地表无岩溶塌陷、漏斗 |
6.6.3 地基基础设计等级为甲级、乙级的建筑物主体宜避开岩溶强发育地段。
6.6.4 存在下列情况之一且未经处理的场地,不应作为建筑物地基:
1 浅层溶洞成群分布,洞径大,且不稳定的地段;
2 漏斗、溶槽等埋藏浅,其中充填物为软弱土体;
3 土洞或塌陷等岩溶强发育的地段;
4 岩溶水排泄不畅,有可能造成场地暂时淹没的地段。
6.6.5 对于完整、较完整的坚硬岩、较硬岩地基,当符合下列条件之一时,可不考虑岩溶对地基稳定性的影响:
1 洞体较小,基础底面尺寸大于洞的平面尺寸,并有足够的支承长度;
2 顶板岩石厚度大于或等于洞的跨度。
6.6.6 地基基础设计等级为丙级且荷载较小的建筑物,当符合下列条件之一时,可不考虑岩溶对地基稳定性的影响。
1 基础底面以下的土层厚度大于独立基础宽度的3倍或条形基础宽度的6倍,且不具备形成土洞的条件时;
2 基础底面与洞体顶板间土层厚度小于独立基础宽度的3倍或条形基础宽度的6倍,洞隙或岩溶漏斗被沉积物填满,其承载力特征值超过150kPa,且无被水冲蚀的可能性时;
3 基础底面存在面积小于基础底面积25%的垂直洞隙,但基底岩石面积满足上部荷载要求时。
6.6.7 不符合本规范第6.6.5条、第6.6.6条的条件时,应进行洞体稳定性分析;基础附近有临空面时,应验算向临空面倾覆和沿岩体结构面滑移稳定性。
6.6.8 土洞对地基的影响,应按下列规定综合分析与处理:
1 在地下水强烈活动于岩土交界面的地区,应考虑由地下水作用所形成的土洞对地基的影响,预测地下水位在建筑物使用期间的变化趋势。总图布置前,应获得场地土洞发育程度分区资料。施工时,除已查明的土洞外,尚应沿基槽进一步查明土洞的特征和分布情况。
2 在地下水位高于基岩表面的岩溶地区,应注意人工降水引起土洞进一步发育或地表塌陷的可能性。塌陷区的范围及方向可根据水文地质条件和抽水试验的观测结果综合分析确定。在塌陷范围内不应采用天然地基。并应注意降水对周围环境和建(构)筑物的影响。
3 由地表水形成的土洞或塌陷,应采取地表截流、防渗或堵塞等措施进行处理。应根据土洞埋深,分别选用挖填、灌砂等方法进行处理。由地下水形成的塌陷及浅埋土洞,应清除软土,抛填块石作反滤层,面层用黏土夯填;深埋土洞宜用砂、砾石或细石混凝土灌填。在上述处理的同时,尚应采用梁、板或拱跨越。对重要的建筑物,可采用桩基处理。
6.6.9 对地基稳定性有影响的岩溶洞隙,应根据其位置、大小、埋深、围岩稳定性和水文地质条件综合分析,因地制宜采取下列处理措施:
1 对较小的岩溶洞隙,可采用镶补、嵌塞与跨越等方法处理。
2 对较大的岩溶洞隙,可采用梁、板和拱等结构跨越,也可采用浆砌块石等堵塞措施以及洞底支撑或调整柱距等方法处理。跨越结构应有可靠的支承面。梁式结构在稳定岩石上的支承长度应大于梁高1.5倍。
3 基底有不超过25%基底面积的溶洞(隙)且充填物难以挖除时,宜在洞隙部位设置钢筋混凝土底板,底板宽度应大于洞隙,并采取措施保证底板不向洞隙方向滑移。也可在洞隙部位设置钻孔桩进行穿越处理。
4 对于荷载不大的低层和多层建筑,围岩稳定,如溶洞位于条形基础末端,跨越工程量大,可按悬臂梁设计基础,若溶洞位于单独基础重心一侧,可按偏心荷载设计基础。
6.7 土质边坡与重力式挡墙
6.7.1 边坡设计应符合下列规定:
1 边坡设计应保护和整治边坡环境,边坡水系应因势利导,设置地表排水系统,边坡工程应设内部排水系统。对于稳定的边坡,应采取保护及营造植被的防护措施。
2 建筑物的布局应依山就势,防止大挖大填。对于平整场地而出现的新边坡,应及时进行支挡或构造防护。
3 应根据边坡类型、边坡环境、边坡高度及可能的破坏模式,选择适当的边坡稳定计算方法和支挡结构形式。
4 支挡结构设计应进行整体稳定性验算、局部稳定性验算、地基承载力计算、抗倾覆稳定性验算、抗滑移稳定性验算及结构强度计算。
5 边坡工程设计前,应进行详细的工程地质勘察,并应对边坡的稳定性作出准确的评价;对周围环境的危害性作出预测;对岩石边坡的结构面调查清楚,指出主要结构面的所在位置;提供边坡设计所需要的各项参数。
6 边坡的支挡结构应进行排水设计。对于可以向坡外排水的支挡结构,应在支挡结构上设置排水孔。排水孔应沿着横竖两个方向设置,其间距宜取2m~3m,排水孔外斜坡度宜为5%,孔眼尺寸不宜小于100mm。支挡结构后面应做好滤水层,必要时应做排水暗沟。支挡结构后面有山坡时,应在坡脚处设置截水沟。对于不能向坡外排水的边坡,应在支挡结构后面设置排水暗沟。
7 支挡结构后面的填土,应选择透水性强的填料。当采用黏性土作填料时,宜掺入适量的碎石。在季节性冻土地区。应选择不冻胀内容来自不 土不 木规范。
6.7.2 在坡体整体稳定的条件下,土质边坡的开挖应符合下列规定:
1 边坡的坡度允许值,应根据当地经验,参照同类土层的稳定坡度确定。当土质良好且均匀、无不良地质现象、地下水不丰富时,可按表6.7.2确定。
表6.7.2 土质边坡坡度允许值
土的类别 | 密实度或状态 | 坡度允许值(高宽比) | |
坡高在5m以内 | 坡高为5m~10m | ||
碎石土 | 密实 | 1:0.35~1:0.50 | 1:0.50~1:0.75 |
中密 | 1:0.50~1:0.75 | 1:0.75~1:1.00 | |
稍密 | 1:0.75~1:1.00 | 1:1.00~1:1.25 | |
黏性土 | 坚硬 | 1:0.75~1:1.00 | 1:1.00~1:1.25 |
硬塑 | 1:1.00~1:1.25 | 1:1.25~1:1.50 | |
注:1 表中碎石土的充填物为坚硬或硬塑状态的黏性土;
2 对于砂土或充填物为砂土的碎石土,其边坡坡度允许值均按自然休止角确定。
3 土质边坡开挖时,应采取排水措施,边坡的顶部应设置截水沟。在任何情况下不应在坡脚及坡面上积水。
4 边坡开挖时,应由上往下开挖,依次进行。弃土应分散处理,不得将弃土堆置在坡顶及坡面上。当必须在坡顶或坡面上设置弃土转运站时,应进行坡体稳定性验算,严格控制堆栈的土方量。
5边坡开挖后,应立即对边坡进行防护处理。
6.7.3 重力式挡土墙土压力计算应符合下列规定:
1 对土质边坡,边坡主动土压力应按式(6.7.3-1)进行计算。当填土为无黏性土时,主动土压力系数可按库伦土压力理论确定。当支挡结构满足朗肯条件时,主动土压力系数可按朗肯土压力理论确定。黏性土或粉土的主动土压力也可采用楔体试算法图解求得。
Ea=(1/2)ψaγh2ka [6.7.3-1]
式中:Ea——主动土压力(kN);
ψa——主动土压力增大系数,挡土墙高度小于5m时宜取1.0,高度5m~8m时宜取1.1,高度大于8m时宜取1.2;
γ——填土的重度(kN/m3);
h——挡土结构的高度(m);
ka——主动土压力系数,按本规范附录L确定。

图6.7.3 有限填土挡土墙土压力计算示意
1—岩石边坡;2—填土
2 当支挡结构后缘有较陡峻的稳定岩石坡面,岩坡的坡角θ>(45°+φ/2)时,应按有限范围填土计算土压力,取岩石坡面为破裂面。根据稳定岩石坡面与填土间的摩擦角按下式计算主动土压力系数:
ka=[sin(α+θ)sin(α+β)sin(θ-δr)]/[sin2αsin(θ-β)sin(α-δ+θ-δr)] [6.7.3-2]
式中:θ——稳定岩石坡面倾角(°);
δr——稳定岩石坡面与填土间的摩擦角(°),根据试验确定。当无试验资料时,可取δr=0.33φk,φk为填土的内摩擦角标准值(°)。
6. 7.4 重力式挡土墙的构造应符合下列规定:
1 重力式挡土墙适用于高度小于8m、地层稳定、开挖土石方时不会危及相邻建筑物的地段。
2 重力式挡土墙可在基底设置逆坡。对于土质地基,基底逆坡坡度不宜大于1:10;对于岩石地基,基底逆坡坡度不宜大于1:5。
3 毛石挡土墙的墙顶宽度不宜小于400mm;混凝土挡土墙的墙顶宽度不宜小于200mm。
4 重力式挡墙的基础埋置深度,应根据地基承载力、水流冲刷、岩石裂隙发育及风化程度等因素进行确定。在特强冻涨、强冻涨地区应考虑冻涨的影响。在土质地基中,基础埋置深度不宜小于0.5m;在软质岩地基中,基础埋置深度不宜小于0.3m。
5 重力式挡土墙应每间隔10m~20m设置一道伸缩缝。当地基有变化时宜加设沉降缝。在挡土结构的拐角处,应采取加强的构造措施。
6.7.5 挡土墙的稳定性验算应符合下列规定:
1 抗滑移稳定性应按下列公式进行验算(图6.7.5-1):
[(Gn+Ean)μ]/(Eat-Gt) ≥1.3 [6.7.5-1]
Gn=GcosαO (6.7.5-2)
Gt=GsinαO (6.7.5-3)
Eat=Easin(α-αO-δ) (6.7.5-4)
Ean=Eacos(α-αO-δ) (6.7.5-5)
式中:G——挡土墙每延米自重(kN);
αO——挡土墙基底的倾角(°);
α——挡土墙墙背的倾角(°);
δ——土对挡土墙墙背的摩擦角(°),可按表6.7.5-1选用;
μ——土对挡土墙基底的摩擦系数,由试验确定,也可按表6.7.5-2选用。

图6.7.5-1 挡土墙抗滑稳定验算示意
表6. 7.5-1 土对挡土墙墙背的摩擦角δ
挡土墙情况 | 摩擦角δ |
墙背平滑、排水不良 | (0~0.33)φk |
墙背粗糙、排水良好 | (0.33~0.50)φk |
墙背很粗糙、排水良好 | (0.50~0.67)φk |
墙背与填土间不可能滑动 | (0.67~1.00)φk |
注:φk为墙背填土的内摩擦角。
表6.7.5-2 土对挡土墙基底的摩擦系数μ
土的类别 | 摩擦系数μ | |
黏性土 | 可塑 | 0.25~0.30 |
硬塑 | 0.30~0.35 | |
坚硬 | 0.35~0.45 | |
粉土 | 0.30~0.40 | |
中砂、粗砂、砾砂 | 0.40~0.50 | |
碎石土 | 0.40~0.60 | |
软质岩 | 0.40~0.60 | |
表面粗糙的硬质岩 | 0.65~0.75 | |
注:1 对易风化的软质岩和塑性指数Ip大于22的黏性土,基底摩擦系数应通过试验确定;
2 对碎石土,可根据其密实程度、填充物状况、风化程度等确定。
2 抗倾覆稳定性应按下列公式进行验算(图6.7.5-2):
(Gx0+Eazxf)/(Eaxzf)≥1.6 [6.7.5-6]
Eax=Easin(α-δ) (6.7.5-7)
Eaz=Eacos(α-δ) (6.7.5-8)
xf=b-zcotα (6.7.5-9)
zf=z-btanα0 (6.7.5-10)
式中:z——土压力作用点至墙踵的高度(m);
x0——挡土墙重心至墙趾的水平距离(m);
b——基底的水平投影宽度(m)。
