一般VIF值大于10(严格来说大于5),存在共线性问题,从分析结果中可以看到VIF值小于10,所以不存在共线性,如果存在共线性问题则不能使用线性回归,可以使用岭回归、Lasso回归等进行分析。
四、前提条件检验
大多数方法进行分析时,都有假设或者分析的前提条件,线性回归也不例外。线性回归分析的前提条件概括为四个:线性、独立、正态和方差齐性,接下来一一检验。
1.线性
一般检验数据之间的线性关系,是为了考察因变量随自变量值变化的情况,可以做相关分析从侧面进行说明或者利用散点图进行说明,散点图更加直观,所以本次选择散点图进行描述(SPSSAU可视化→散点图)。结果如下:
以“不良贷款(亿元)”作为Y轴,“本年累计应收贷款(亿元)”作为X轴建立散点图,发现“不良贷款(亿元)”与“本年累计应收贷款(亿元)”为线性关系。以同样的方法对“贷款项目个数”和“不良贷款”建立散点图,也存在线性关系。
如果不呈现线性关系可以尝试通过变量变换进行修正,常用的变量变换的方法有对数变换、倒数变换等等。
2.独立
独立是指残差是独立的。特别是,时间序列数据中的连续残差之间没有相关性。可以查看DW值,一般在DW值在2附近(比如1.7-2.3之间),则说明没有自相关性,模型构建良好,反之若DW值明显偏离2,则说明具有自相关性,模型构建较差(一般如果不是时间序列数据也可以不用过度关注)。尝试构建回归分析模型发现DW值为2.286。
从结果中可以看出DW值为2.286在2的附近,表示模型构建良好。接下来进行验证“正态”。
3.正态
正态表示残差服从正态分布。其方差σ2 = var (ei)反映了回归模型的精度,一般 σ 越小,用所得到回归模型预测y的精确度越高。建立回归分析模型得到残差与预测值,利用残差绘制直方图查看残差是否满足正态分布,结果如下: