如果直方图呈现‘中间高,两边低,左右基本对称的 “钟形图”则基本服从正态分析,但是数据量过少等也可能影响结果导致很难呈现出标准的正态分布,如果是这种情况如果看见‘钟形’也可以可以接受的。上图可以看出,数据呈现的分布并不对称,但是也出现近似‘钟形’曲线,所以也可以接受。残差满足正态分布,接下来验证方差齐性。
4.方差齐性
方差齐性是指残差的大小不随所有变量取值水平的改变而改变,即方差齐性。那么如何进行呢?首先对残差和预测值进行标准化,与标准化残差为Y轴,标准化预测值为X轴绘制散点图,如果所有点均匀分布在直线Y=0的两侧,则可以认为是方差齐性,结果如下:
从散点图可以发现数据大致均匀分布在Y=0的两侧,所以可认为是方差齐性,综上,数据满足回归分析的前提假设。可以进行线性回归。
五、回归分析
由上述分析与检验最后以“不良贷款(亿元)”为因变量,“本年累积应收贷款(亿元)”和“贷款项目个数(个)”为自变量构建线性回归模型。分析将从模型效果以及模型结果两部分进行说明。
1.模型效果说明
模型效果说明包括F检验以及模型拟合优度。
F检验
F检验主要是观测被解释变量的线性关系是否显著,上表可以看出,进行回归方程的显著性检验时,统计量F=17.521,对应的p值小于0.05,所以说明被解释变量的线性关系是显著的,可以建立模型。那么模型的拟合优度又是怎么样的?接下来进行说明。
拟合优度
模型拟合优度一般查看R方值(决定系数,模型拟合指标),如果R方为0.3代表自变量可以解释因变量30%的变化原因,一般越接近1说明拟合越好,但是很多研究中不会过多关注其大小,原因在于多数时候我们更在乎X对于Y是否有影响关系。从上表可以看出,模型R方值为0.614,调整R方为0.579。调整R方也是模型拟合指标。当x个数较多是调整R²比R²更为准确。
意味着“本年累积应收贷款(亿元)”和“贷款项目个数(个)”可以解释“不良贷款”61.4%变化原因。可见,模型拟合优度良好,说明被解释变量可以被模型大部分解释。接下来对模型结果进行解释。
2.模型结果解释
管理者想要知道“本年累积应收贷款”、 “贷款项目个数”以及“本年固定资产投资额”对“不良贷款”是否有影响,如果有影响,它们之间谁的影响更大?因为前面的相关分析中得到了“本年固定资产投资额”与“不良贷款”之间没有相关关系,一般情况下没有相关关系是没有影响关系的,所以分析“本年累积应收贷款”、 “贷款项目个数”对“不良贷款”的影响关系,模型结果分为“是否有影响”以及“影响程度”进行阐述。首先查看自变量对因变量是否有影响。
是否有影响