图5 楚德诺夫斯基公式
除此之外,还有一些很有趣的计算圆周率的公式,比如贝利-波尔温-普劳夫公式(BBP公式),它可以计算圆周率在16进制下的任意位而不用计算前面的位,这让合作计算圆周率成为了可能。

图6 BBP公式
π可以算尽吗从古至今,数学家们都期望着π会有一些特殊的性质,比如被算尽、在某一位后循环,或者被表示成为一些更为简单的代数式。
然而,这个希望却被我们前文中提到的伽罗瓦所创立的群论狠狠的击碎了,这个理论说明π是一个超越数,也就是说π不是任何代数方程的根,其不能被表达为长度有限的代数数组成的代数式的形式,我们只能用上文中那种无穷级数或者积分来精准表示π的值。
不过数学界对于π有了新的猜想,他们认为π是一个“正规数”,也就是说每一个数在π中出现的概率是均等的,这个猜想没有被证明。
但是,计算机科学家通过穷举法,证明了π中含有所有的8位数,这意味着我们的生日、我们的毕业典礼、我们的结婚纪念日……一切的日期都会在π中出现,不如现在就去查查自己的生日在π中第几位?
我们有必要了解π吗现在的圆周率计算工作其实已经大大的超出了实用的范围,利用几十位的圆周率计算与冥王星轨道半径相等的圆的周长的误差已经小于一个原子核的尺度了。
目前对于圆周率的计算主要是为了检验超级计算机的计算能力。与寻找梅森素数、孪生素数一样,对于圆周率的计算是一个超级计算机必须经历的“大考”。不过,即使是算力再强的计算机,也不能完全计算π,π中仍然隐藏着无穷的秘密,等待着人类前去探索。
或许未来的某一天,人类可以自豪的告慰刘徽、祖冲之、欧拉、拉马努金等诸多先贤:“我们已经完全了解π了”。
出品:科普中国
作者:饭堂科普
监制:中国科普博览

中国科普博览是中科院科普云平台,由中科院计算机网络信息中心主办,依托中科院高端科学资源,致力于传播前沿科学知识,提供趣味科教服务。
,