等腰三角形的存在性问题是初中数学中的重要考点,也是分类讨论思想的重点体现。根据等腰三角形的性质,在△ABC中,若AB为底,则BC=AC:若AC为底,则AB=BC;若BC为底,则AB=AC。所以等腰三角形的存在性问题,往往有2个甚至更多的解,在解题时需要尤其注意。这篇文章重点带大家了解中考中经常出现的反比例函数中的等腰三角形问题,并以例题的方式展现出来。
例一:
例一解析如下:
例二:
例二解析如下图:
例三:
总结一下此类问题的解题思路:
(1) 用几何或代数的方法,表示出等腰三角形的三边对应的函数式;
(2) 根据条件分情况进行讨论,排除不可能的情况,将可能情况列出方程
(3) 解出方程,并进行检验,舍去增根.
注:此类题中常用公式为两点间距离公式: