怎么通过图片辨别口红的颜色,辨别口红颜色的方法

首页 > 经验 > 作者:YD1662023-12-03 14:55:18

还好,在万能的github上,文摘菌找到了一个宝藏数据库“口红颜色可视化”,这个数据库堪比口红的色号宇宙,不仅囊括了当前最主流品牌的各种系列色号,还很良心的在色盘上排列了出来。

这个数据集是一个嵌套的字典数据结构,存为json串的形式,里面记录了每个口红品牌系列下不同口红色号的颜色id、名称、和16进制颜色值。

直!男!救!星!有木有!

口红色号可视化链接:

https://github.com/Ovilia/lipstick

不过看这这密密麻麻的颜色,真心佩服各大口红品牌的文案高手,是怎么样区别每一个看不出区别的颜色,并且还要分别取名字的。

怎么通过图片辨别口红的颜色,辨别口红颜色的方法(9)

傻傻分不清的文摘菌对5个品牌的不同系列做了一下统计和色号录入,于是,剩下的就交给计算机啦。

先用番茄做个实验?

既然有了如此完备的色号数据库,那么文摘菌就有了一个讨巧的方法:要想找到合适的色号,可以直接截取颜色,然后在数据库中进行比对。

这个方法非常好操作,在上唇色之前,我们不如先拿别的红色物品来练手。

比如,这里有一只番茄图片。

你看这个番茄它又大又圆:

怎么通过图片辨别口红的颜色,辨别口红颜色的方法(10)

文摘菌在其中截取了成色均匀、无高亮的矩形图片:

提取这张纯色图片的RGB值在技术上是可行的,getcolor.py代码如下:

import colorsysimport PIL.Image as Image def get_dominant_color(image): max_score = 0.0001 dominant_color = None for count,(r,g,b) in image.getcolors(image.size[0]*image.size[1]): # 转为HSV标准 saturation = colorsys.RGB_to_hsv(r/255.0, g/255.0, b/255.0)[1] y = min(abs(r*2104 g*4130 b*802 4096 131072)>>13,235) y = (y-16.0)/(235-16) #忽略高亮色 if y > 0.9: continue score = (saturation 0.1)*count if score > max_score: max_score = score dominant_color = (r,g,b) return dominant_color

为了减少误差,需要裁剪多个不同位置的图片,保存在本地的一个文件夹中,读取文件,提取颜色,求平均值,得到的番茄最终的RGB颜色,代码如下:

import osimport getcolorfrom os.path import join as pjoinfrom scipy import misc def load_color(color_dir,list): count = 0 for dir in os.listdir(color_dir): img_dir = pjoin(color_dir, dir) image = getcolor.Image.open(img_dir) image = image.convert('RGB') get=getcolor.get_dominant_color(image) list.append(get) count = count 1 #print(person_dir) #print(count) return count def Mean_color(count,list): Mean_R=Mean_G=Mean_B=0 for i in range(count): tuple=list[i] Mean_R =tuple[0] Mean_G =tuple[1] Mean_B =tuple[2] MeanC=((int)(Mean_R/count),(int)(Mean_G/count),(int)(Mean_B/count)) return Me

番茄的颜色提取到了,那么和什么做比对呢?

当然是口红的数据,文摘菌这儿用到了5个品牌,分别是圣罗兰、香奈儿可可小姐、迪奥、美宝莲、纪梵希,共17个系列,271个口红色号,数据集是一个嵌套的字典数据结构,存为json串的形式,里面记录了每个口红品牌系列下不同口红色号的颜色id、名称、和16进制颜色值,lipstick.json部分数据集展示如下:

{"brands":[{"name":"圣罗兰","series":[{"name":"莹亮纯魅唇膏","lipsticks":[{"color":"#D62352","id":"49","name":"撩*"},{"color":"#DC4B41","id":"14","name":"一见倾心"},{"color":"#B22146","id":"05","name":"浮生若梦"},

数据集中存储的RGB颜色是16进制的字符串形式,需要将其转换成RGB值,比较两个颜色相近与否,实际上是比较RGB三个分量维度上的误差,最小的口红输出对应的品牌、系列、色号和id,代码如下:

import jsonimport getcolorimport numpy as npimport lipcolor #filename = 'temp.txt'##write the temp data to file##def WtoFile(filename,RGB_temp): num=len(RGB_temp) with open(filename,'w') as f: for i in range(num): s = str(RGB_temp[i]).replace('[','').replace(']','') f.write(s) f.write("\n") #operate the data ###save the brand&series&color id&color name to sum_list####covert the color #D62352 to RGB_array####caculate the RGB difference to RGB_temp and write the value to file##def data_operate(): with open('lipstick.json', 'r', encoding='utf-8') as f: ret_dic = json.load(f) #print(ret_dic['brands']) #print(type(ret_dic)) # <class 'dict'> #print(ret_dic['brands'][0]['name']) b_num=len(ret_dic['brands']) #print(b_num)#brands number s_list=[] #series brands# for i in range(len(ret_dic['brands'])): s_num=len(ret_dic['brands'][i]['series']) s_list.append(s_num) #print("{0} has {1} series".format((ret_dic['brands'][i]['name']),(s_list[i]))) #the lipstick color of every brands every series# #the first loop calculate the total color numbers sum=0 for b1 in range(b_num): for s1 in range(s_list[b1]): brand_name=ret_dic['brands'][b1]['name'] lip_name=ret_dic['brands'][b1]['series'][s1]['name'] color_num=len(ret_dic['brands'][b1]['series'][s1]['lipsticks']) sum =color_num#calculate the total color numbers #the second loop save the message to a list# sum_list=np.zeros((sum,4), dtype=(str,8)) value_array=np.zeros((sum,6), dtype=int) i=0 for b2 in range(b_num): for s2 in range(s_list[b2]): brand_name=ret_dic['brands'][b2]['name'] #print(type(brand_name)) lip_name=ret_dic['brands'][b2]['series'][s2]['name'] color_num=len(ret_dic['brands'][b2]['series'][s2]['lipsticks']) for c in range(color_num): color_value=ret_dic['brands'][b2]['series'][s2]['lipsticks'][c]['color'] color_name=ret_dic['brands'][b2]['series'][s2]['lipsticks'][c]['name'] color_id=ret_dic['brands'][b2]['series'][s2]['lipsticks'][c]['id'] #print("{0} series {1} has {2} colors,color {3}:{4}".format(brand_name,lip_name,color_num,c 1,color_name)) sum_list[i][0]=brand_name sum_list[i][1]=lip_name sum_list[i][2]=color_id sum_list[i][3]=color_name #value_array[i]=value_array[i][1] #convert "#D62352" to [13 6 2 3 5 2]# for l in range(6): temp=color_value[l 1] if(temp>='A'and temp<='F'): temp1=ord(temp)-ord('A') 10 else: temp1=ord(temp)-ord('0') value_array[i][l]=temp1 i =1 #the third loop covert value_array to RGB_array# RGB_array=np.zeros((sum,3), dtype=int) for i in range(sum): RGB_array[i][0]=value_array[i][0]*16 value_array[i][1] RGB_array[i][1]=value_array[i][2]*16 value_array[i][3] RGB_array[i][2]=value_array[i][4]*16 value_array[i][5] #calculate the similar and save to RGB_temp #RGB_temp=np.zeros((sum,1), dtype=int) RGB_temp=np.zeros((sum,1), dtype=float) for i in range(sum): R=RGB_array[i][0] G=RGB_array[i][1] B=RGB_array[i][2] RGB_temp[i]=abs(get[0]-R) abs(get[1]*3/4-G) abs(get[2]-B) RGB_temp.tolist();#covert array to list #print(RGB_temp) filename="temp.txt" WtoFile(filename,RGB_temp) #sort the RGB_temp# result=sorted(range(len(RGB_temp)), key=lambda k: RGB_temp[k]) #print(result) #output the three max prob of the lipsticks# print("The first three possible lipstick brand and color id&name are as follows:") for i in range(3): idex=result[i] print(sum_list[idex]) print("The first three possible lipstick brand RGB value are as follows:") for i in range(3): idex=result[i] R=RGB_array[idex][0] G=RGB_array[idex][1] B=RGB_array[idex][2] tuple=(R,G,B) print(tuple) if __name__ == '__main__': #image = getcolor.Image.open(inputpath) #image = image.convert('RGB') #get=getcolor.get_dominant_color(image)#tuple #get=(231, 213, 211) list=[] color_dir="output" count=lipcolor.load_color(color_dir,list) get=lipcolor.Mean_color(count,list) print("the extracted RGB value of the color is {0}".format(get)) #operate the data# data_operate()

文摘菌输出了最有可能吻合番茄颜色的前三个口红的信息,在Spyder中的运行结果:

怎么通过图片辨别口红的颜色,辨别口红颜色的方法(11)

可以看到最有可能的三个口红品牌色号的RGB值与番茄的RGB值是非常接近的:

提取到的番茄颜色:

怎么通过图片辨别口红的颜色,辨别口红颜色的方法(12)

上一页12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.