人脸识别使用了什么技术,人脸识别有什么新的技术

首页 > 经验 > 作者:YD1662024-01-14 07:20:59

本文内容涵盖人脸识别发展历程、市场研究、核心技术、商业应用以及产业落地、个人看法等干货研究。注意,本文干货满满,约有2万7千字,强烈建议大家先收藏后学习!

01 发展史

1. 人脸识别的理解

人脸识别(Face Recognition)是一种依据人的面部特征(如统计或几何特征等),自动进行身份识别的一种生物识别技术,又称为面像识别、人像识别、相貌识别、面孔识别、面部识别等。通常我们所说的人脸识别是基于光学人脸图像的身份识别与验证的简称。

人脸识别利用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸图像进行一系列的相关应用操作。技术上包括图像采集、特征定位、身份的确认和查找等等。简单来说,就是从照片中提取人脸中的特征,比如眉毛高度、嘴角等等,再通过特征的对比输出结果。

2. 人脸识别的发展简史

第一阶段(1950s—1980s)初级阶段

人脸识别被当作一个一般性的模式识别问题,主流技术基于人脸的几何结构特征。这集中体现在人们对于剪影(Profile)的研究上,人们对面部剪影曲线的结构特征提取与分析方面进行了大量研究。人工神经网络也一度曾经被研究人员用于人脸识别问题中。较早从事 AFR 研究的研究人员除了布莱索(Bledsoe)外还有戈登斯泰因(Goldstein)、哈蒙(Harmon)以及金出武雄(Kanade Takeo)等。总体而言,这一阶段是人脸识别研究的初级阶段,非常重要的成果不是很多,也基本没有获得实际应用。

第二阶段(1990s)高潮阶段

这一阶段尽管时间相对短暂,但人脸识别却发展迅速,不但出现了很多经典的方法,例如Eigen Face, Fisher Face和弹性图匹配;并出现了若干商业化运作的人脸识别系统,比如最为著名的 Visionics(现为 Identix)的 FaceIt 系统。 从技术方案上看, 2D人脸图像线性子空间判别分析、统计表观模型、统计模式识别方法是这一阶段内的主流技术。

第三阶段(1990s末~现在)

人脸识别的研究不断深入,研究者开始关注面向真实条件的人脸识别问题,主要包括以下四个方面的研究:1)提出不同的人脸空间模型,包括以线性判别分析为代表的线性建模方法,以Kernel方法为代表的非线性建模方法和基于3D信息的3D人脸识别方法。2)深入分析和研究影响人脸识别的因素,包括光照不变人脸识别、姿态不变人脸识别和表情不变人脸识别等。3)利用新的特征表示,包括局部描述子(Gabor Face, LBP Face等)和深度学习方法。4)利用新的数据源,例如基于视频的人脸识别和基于素描、近红外图像的人脸识别。

02 市场研究

1. 全球人脸识别市场

前瞻根据人脸识别行业发展现状;到2016年,全球生物识别市场规模在127.13亿美元左右,其中人脸识别规模约26.53亿美元,占比在20%左右。预计到2021年,全球人脸识别市场预计将达到63.7亿美元,按预计期间的复合增长率达17.83%。

人脸识别使用了什么技术,人脸识别有什么新的技术(1)

2. 中国人脸识别市场

前瞻根据人脸识别行业发展现状,估算我国人脸识别市场规模约占全球市场的10%左右。2010-2016年,我国人脸识别市场规模逐年增长,年均复合增长率达27%。2016年,我国人脸识别行业市场规模约为17.25亿元,同比增长27.97%,增速较上年上升4.64个百分点。

人脸识别使用了什么技术,人脸识别有什么新的技术(2)

3. 国内主要玩家分布

3.1 中国部分人脸识别公司(排名不分先后)

人脸识别使用了什么技术,人脸识别有什么新的技术(3)

人脸识别使用了什么技术,人脸识别有什么新的技术(4)

首页 12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.