图6 材料色散图(图片来源于网络)
其实色散可以分为三种:材料色散、模式色散、波导色散。图5就是材料引起的色散;模式色散是指在不同模式情况下,光走过的路程长短是不一样的,因此到达终点的时间不一致,这也会引起色散;最后一种波导色散是指在同一个模式下,一部分光(与频率无关,所以不是材料色散)因为在纤芯和包层没发生全反射,而在包层和涂覆层之间反射全反射,所以导致这部分光通过了包层然后再回到纤芯中传播,所以与另一部分同频率的光只在纤芯中传播的传输距离不一致,从而导致了同频率光的色散。
光纤传感与通信
接下来,让我们从理论回到现实中吧。光纤最初的用途是用来通信的,所以现在我们来回答第三个问题:通常我们会说,人太帅拖网速,啊不,网速(10M,20M,50M等)有快有慢,那这网速到底指的是什么,由什么决定?
举个例子,10M的带宽,下载速度就是10Mbit/s,对应网速就是1.25MByte/s。所以如果要提高网速,其实就是要增加光纤的带宽。那带宽又是啥?很好理解,带宽就是频率带的宽度,也就是光在光纤中传输的时候,我们最基本的要求肯定是传输信号要正确的,不能误码,否则不就出错了嘛。但是由于色散特性的存在,不同频率的光跑得不一样快,所以在时域频带会展宽,这导致各码元之间会重叠,为了保证正确性,就需要加大码元之间的时间间隔,自然会降低容量。 所以,影响光纤带宽的因素是光纤的色散特性,光纤的色散愈小,光纤的带宽愈宽。
最后一个问题,光纤除了传输光信号,还能用来做啥?用来做传感,检测各种物理条件。小的时候,我经常在想,你把光缆全部埋在地底下或者海洋底下,如果某一点坏了,你怎么知道哪里坏了?
图7 光纤瑞利散射回波信号图
从图7可以看到,利用瑞利散射的特性,我们可以得到散射回来光信号的分布图,损耗是随着距离增大逐渐增加的,如果在某一处有跳变,说明这个地方损耗比较严重,应该是节点之类的。如果在某个节点彻底断了,没有回波信号,那么根据距离=速度*时间的原理,通过测得这个点回来信号的时间,就能大致计算出这个断点的位置。
另外,光纤所在的外部环境:压力或者温度都会对光纤的衰减产生一定的影响,所以就可以利用这一特性来检测外部环境条件。以分布式布里渊散射传感为例,众所周知,当在强光作用下光纤会产生非弹性散射,包括布里渊散射,而布里渊散射会受到压力和温度的影响。所以,我们根据布里渊频移的量,就能得到一个方程,关于压力和温度的二元一次方程。如果要解出这二个变量,我们还需要再来一个不相关的函数,否则谁知道压力和温度这二个量变化的贡献大小。恰好,瑞利散射强度也会随着压力和温度的变化而变化,而布里渊散射的强度刚好是瑞利散射强度的常数(理论证明是一个定值)倍,这样联立这2个方程组,我们就能解出压力和温度这2个未知数。