作为一种实验性的技术
第一代核电站种类繁多
但在大多数情况下
它们都是利用高温水蒸气
驱动汽轮机旋转
进而带动发电机产生电能
与常规的火电厂相差无几
但不同的是
火电厂利用煤炭燃烧将水加热
而在核电站中
则是利用原子核的裂变反应
提供足够的热量
(核电与火电发电原理对比,制图@罗梓涵/星球研究所)
▼
在火电厂中
为了保证煤炭的持续燃烧
需要充足的空气和足够高的温度
而在核反应堆里
需要的则是一定数目的中子
人们发现
有些元素裂变的同时会产生多个中子
从而继续引发其他原子裂变
成为“链式反应”
只有这样的元素才能被用作核燃料
最常用的便是铀元素的一种
铀235
(链式反应示意图,制图@罗梓涵/星球研究所)
▼
然而
相比煤炭的燃烧
原子核的“燃烧”则困难重重
一方面
引发反应的中子数量
不能太多也不能太少
否则会导致反应太过剧烈甚至爆炸
或太过微弱直至“熄火”
只有当每次有且只有1个中子参与下次裂变时
反应才会稳定地进行下去
于是
人们在核反应堆中加入了
控制棒
它由容易吸收中子的材料制成
通过调节控制棒的位置
便可以改变核反应堆中的中子数量
(工作人员正在进行控制棒驱动机构的安装,摄影师@赖虔瑜/中国广核集团)
▼
另一方面
中子的速度还不能太快
否则很容易与原子核“擦肩而过”
从而降低反应效率
于是
人们又在核反应堆中加入了
慢化剂
利用慢化剂的原子与中子碰撞
便可以实现中子的减速
以增大与原子核反应的机会
(核反应堆内部结构示意,其中将核裂变产生的热量带出的介质称为冷却剂,冷却剂和慢化剂可以为同一种物质,比如图中的水既是慢化剂,也是冷却剂;另外,并不是所有的核电站都需要慢化剂,需要慢化剂的核反应堆统称为“热中子反应堆”,制图@郑伯容/星球研究所)
▼