假设数列an是收敛的,那么有lim(n→∞)Sn=C(C是常数)。那么lim(n→∞)an=lim(n→∞)(S(n+1)-Sn)=lim(n→∞)S(n+1)-lim(n→∞)Sn=C-C=0。
所以收敛级数的通项当n→∞时,极限必然是0当。
而n→∞时,1/n→0。那么cos1/n→cos0=1,通项的极限不是0,所以∑(n=1,∞)cos1/n发散。完
假设数列an是收敛的,那么有lim(n→∞)Sn=C(C是常数)。那么lim(n→∞)an=lim(n→∞)(S(n+1)-Sn)=lim(n→∞)S(n+1)-lim(n→∞)Sn=C-C=0。
所以收敛级数的通项当n→∞时,极限必然是0当。
而n→∞时,1/n→0。那么cos1/n→cos0=1,通项的极限不是0,所以∑(n=1,∞)cos1/n发散。完
Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.