计算结果与国家标准实验值对照,换算式计算结果与标准实验值之误差为±0.1HRC。
04
布氏硬度→维氏硬度
布氏硬度与维氏硬度的关系,同样根据σHB=σHV得出公式
此公式换算结果与国家标准换算值对照,换算误差为±2HV。
05
努氏硬度→洛氏硬度
因为努氏硬度与洛氏硬度的对应曲线类似于抛物线,故由曲线得出近似的换算公式为
此公式比较精确,可以作为使用参考。
连铸常用的计算公式
浇注能力:连铸机每分钟浇注的钢液量 | |
Q=nFVr | |
Q | 连铸机的浇注能力(t/min) |
n | 流数 |
F | 连铸坯的断面积(m2) |
V | 拉坯速度(m/min) |
r | 连铸坯的比重 |
钢液成坯率 |
C1=(浇注坯量/钢液浇筑量)×100% 一般为96~98% |
连铸坯的合格率 |
C2=(合格铸坯量/浇注坯量)×100% 一般为96~99% |
连铸坯的日有效作业率 |
C3=(连铸机每日实际浇注时间/24)×100% |
连铸机的日产量 | |
Q日=24×60×Q×C1×C2×C3 | |
Q | 浇注能力(吨/分钟) |
钢水收得率 |
C4=(合格的铸坯量/钢液浇注量)×100% |
连铸机的流数 | |
n=G/(F×V×r×T) | |
n | 连铸机的流数 |
G | 盛钢桶容量(t) |
F | 铸坯的断面积(m2) |
V | 坯拉速度(m/min) |
r | 连铸坯的比重(t/m3)(碳素镇静钢7.6,沸腾钢7.4) |
T | 盛钢桶内钢液允许的浇注时间(min) |
盛钢桶内钢液最大允许的浇注时间 | |
T最大=[(lgG-0.2)/0.3]×f | |
T最大 | 盛钢桶内钢液最大允许的浇注时间(分钟) |
G | 盛钢桶容量(吨) |
f | 质量系数,取决于盛钢桶所允许的温度损失,要求格的钢种取10,要求低钢种取12 |
拉坯速度 | |
V=K×L/F | |
V | 拉坯速度(m/min) |
L | 铸坯断面周长(mm) |
F | 铸坯的断面积(mm2) |
K | 速度系数(m×mm/) 方坯45~75,板坯45~60,圆坯35~45 |
中间包的最小容量 | |
G中小=1.3FVrTn | |
G中小 | 中间包最小容量(t) |
F | 铸坯的断面积(m2) |
V | 拉坯速度(m/min) |
r | 钢液比重(t/m3) 一般取7.0 |
T | 更换盛钢桶所需时间(t) |
n | 流数 |
结晶器倒锥度 | |
εs=(S下-S上)/S下×100% | |
εs | 结晶器倒锥度(%) |
S下 | 结晶器下口面积(mm2) |
S上 | 结晶器上口面积(mm2) |
对于矩形坯和板坯连铸机,铸坯的宽度和厚度方向上的收缩率不一样 | |
结晶器倒锥度计算 | |
ε=(L下-L上)/L下×100% | |
ε | 结晶器边长计算的倒锥度(%) |
L下 | 结晶器下口宽边或窄边的长度(mm) |
L上 | 结晶器上口宽边或窄边的长度(mm) |
结晶器的冷却强度 | |
Q=0.0036Fv | |
Q | 结晶器冷却水量(m3/h) |
F | 结晶器水缝总面积(mm2) 其中F=B×D |
B | 结晶器的水缝周长(mm) |
D | 结晶器水缝断面宽度,取4~5mm |
v | 冷却水在水缝内的流速,方坯取6~12m/s,板坯取3.5~5m/s |
二次冷却段的耗水量 | |
Q=W×G | |
Q | 二冷区耗水量(m3/h) |
W | 二次冷却强度(升/千克钢)(也叫比水量:所消耗的冷却水量与通过二冷区的铸坯质量的比值。)低碳钢比水量1.0~1.2升/千克钢;中高碳钢,低合金钢比水量0.7~1.0升/千克钢;不锈钢,裂纹敏感钢比水量0.4~0.6升/千克钢;高速钢比水量0.1~0.3升/千克钢 |
G | 连铸机理论小时产量(t/h) |
浇注平台温度(盛钢桶开始浇注时,桶内钢液测量的温度) | |
T平=T中 △T1 △T2 βt | |
T平 | 浇注平台温度(℃) |
T中 | 中间包内钢液的理论浇注温度(℃) |
△T1 | 中包内钢液初期温度降低值(℃)(与中包预热状态有关,一般10~15℃) |
△T2 | 钢液从盛钢桶到中间包的温度降低值(℃) |
β | 盛钢桶内自然降温速率(℃/min) 盛钢桶50吨为1.3~1.5℃/min,盛钢桶100吨为0.5~0.6℃/min,盛钢桶200吨为0.3~0.4℃/min,盛钢桶300吨为0.2~0.3℃/min |
t | 盛钢桶内钢液最大允许浇注时间(min) |
连铸浇注温度(中间包内钢液温度) | |
T中=T熔 a | |
T中 | 中间包的钢液理论浇注温度(℃) |
T熔 | 钢液的熔点(℃) |
T熔=1538℃-[88C% 8Si% 5Mn% 30P% 25S% 5Ca% 4Ni% 2Mo% 2V% 1.5Cr%] | |
a | 钢液的过热度(℃) 中包过热度取值范围10~30℃,铸坯断面大的取值高一些 |
钢的热处理工艺设计经验公式
01
钢的热处理
1.1正火加热时间
t=KD | |
t | 加热时间 |
D | 工件有效厚度(mm) |
K | 加热时间系数(s/mm) |
K值的经验数据 | |||
加热设备 | 加热温度(℃) | 碳素钢K/(S/mm) | 合金钢K(S/mm) |
箱式炉 | 800~950 | 50~60 | 60~70 |
盐浴炉 | 800~950 | 12~25 | 20~30 |
1.2正火加热温度
根据钢的相变临界点选择正火加热温度 | |
低碳钢 | T=Ac3 (100~150℃) |
中碳钢 | T=Ac3 (50~100℃) |
高碳钢 | T=Ac3 (30~50℃) |
亚共析刚 | T=Ac3 (30~80℃) |
共析钢及过共析钢 | T=Acm (30~50℃) |
1.3淬火加热时间
t=a×K×D(不经预热) | |
t=(a b)×K×D(经一次预热) | |
t=(a b c)×K×D(经二次预热) | |
t | 加热时间(min) |
a | 到达淬火温度的加热系数(min/mm) |
b | 到达预热温度的加热系数(min/mm) |
c | 到达二次预热温度的加热系数(min/mm) |
K | 装炉修正系数 |
D | 工件的有效厚度(mm) |
在一般的加热条件下,采用箱式炉进行加热时,碳素钢及合金钢a多采用1~1.5min/mm;b为1.5~2min/mm(高速钢及合金钢一次预热a=0.5~0.3;b=2.5~3.6;二次预热a=0.5~0.3;b=1.5~2.5;c=0.8~1.1),若在箱式炉中进行快速加热时,当炉温较淬火加热温度高出100~150℃时,系数a约为1.5~20s/mm,系数b不用另加。若用盐浴加热,则所需时间,应较箱式炉中加热时间少1/5(经预热)至1/3(不经预热)左右。
工件装炉修正系数K | |
工件装炉方式 | 修正系数 |
t030111.1 | 1.0 |
t030111.3 | 2.0 |
t030111.5 | 1.3 |
t030111.7 | 1.0 |
1.4淬火加热温度
亚共析钢的淬火加热温度 | Ac3 (30~50℃) |
共析和过共析钢 | Ac1 (30~50℃) |
合金钢的淬火加热温度 | Ac1(或Ac3) (50~100℃) |
1.5回火加热时间
对于中温或高温回火的工件,回火时间是指均匀透烧所用的时间 t=aD b | |
t | 回火保温时间(min) |
D | 工件有效尺寸(mm) |
a | 加热系数(min/mm) |
b | 附加时间,一般为10~20min |
盐浴的加热系数为0.5~0.8min/mm; 铅浴的加热系数为0.3~0.5min/mm; 井式回火电炉(RJJ系列回火电炉)加热系数为1.0~1.5min/mm 箱式电炉加热系数为2~2.5min/mm |
1.6回火加热温度
T=200 k(60-x) | |
x | 回火后硬度值(HRC) |
k | 待定系数,对于45钢,x>30,k=11 |
大量试验表明,当钢的回火参数P一定时,回火所达到的工艺效果—硬度值或力学性能相同。因此,按传统经验式确定回火参数仅在标准态(回火1h)时方可使用,实际生产应用受到限制。
为了解决上述问题,将有关因素均定量表达,文献中导出如下回火公式:
(1) 在200~400℃范围: HV=640-(T-20)×1.05 (lgt-1.28)×366 (T-200)(lgt-1.28)×0.036 | |
(2) 在400~600℃范围: HV=17.2×103/T-(lgt-1.28)×29.4-(T-400)(lgt-1.28)×0.023 | |
T | 回火温度℃ |
t | 回火时间min |
对比可以看出影响回火效果的主要因素是T和t能较好,较真实地反映出实际工艺参数的影响,定量地表达了不同温度区间回火硬度的变化特征。
02
钢的淬火冷却时间计算
钢预冷淬火时空气预冷时间ty(s) | |
ty=12 (3~4)D | |
D | 淬火工件危险截面厚度(mm) |
钢Ms点上分级冷却时间tf(s) | |
tf=30 5D |
03
钢的淬火硬度的计算
钢终端淬火试验时,距试样顶端4~40mm范围内各点硬度H4~40(HRC) | |
H4~40=88C1/2-0.0135E2C1/2 19Cr1/2 6.3Ni1/2 16Mn1/2 35Mo1/2 5Si1/2-0.82G-20E1/2 2.11E-2 | |
E | 到顶端距离(mm) |
G | 奥氏体晶粒度 |
钢的最高淬火硬度,即淬火钢获得90%马氏体时的硬度Hh(HRC) | |
Hh=30 50C | |
钢的临界淬火硬度,即淬火钢获得50%马氏体时的硬度H1(HRC) | |
H1=24 40C | |
钢淬火组织为马氏体时的硬度HVM | |
HVM=127 949C 27Si 11Mn 8Ni 16Cr 21logvM | |
钢淬火组织为贝氏体时的硬度HVB | |
HVB=-323 185C 330Si 153Mn 65Ni 144Cr 191Mo logv B(89 54C-55Si-22Mn-10Ni-20Cr-33Mo) | |
钢淬火组织为珠光体-铁素体的硬度HVPF | |
HVPF=42 223C 53Si 30Mn 13Ni 7Cr 19Mo logv PF(10-19Si 4Ni 8Cr 130V) |
04
钢回火后硬度的计算
钢淬火组织为马氏体时的回火硬度HVM | |
HVM=-74-434C-368Si 15Mn 37Ni 17Cr-335Mo-2235V (103/PB)(260 616C 321Si-21Mn-35Ni-11Cr 352Mo-2345V) | |
PB | 回火参数(回火温度×回火时间),此处加热时间为1h |
钢淬火组织为贝氏体时的回火硬度HVB | |
HVB=262 162C-349Si-64Mn-6Ni-186Cr-485Mo-857 (103/PB)(-149 43C 336Si 79Mn 16Ni 196Cr 498Mo 1094V) | |
钢回火后硬度回归方程 | |
HRC=75.5-0.094T 0.66CM | |
T | 回火温度(℃) |
CM | 钢的含碳量或碳当量(%) |
CM=C Mn/6 (Cr Mo V)/5 (Ni Cu)/15 | |
45钢回火后硬度回归方程 | |
HV=640-(T-200)1.05-(logt-1.28)36.6 (T-200)(logt-1.28)0.0036 20≤T≤400 | |
HV=17.2×104/T-(logt-1.28)29.4-(T-400)(logt-1.28)0.014 400≤T≤600 | |
t | 回火时间(min) |
05
钢的回火温度估算(碳素钢)
T=200 k(60-x) | |
x | 回火后硬度值(HRC) |
k | 待定系数,对于45钢,x>30,k=11;x≤30,k=12 |
06
由钢的化学成分估算力学性能
6.1 求屈服比(屈服极限σs/抗拉强度σb)
油液淬火调质σs/σb(%) |
σs/σb=55 3Si 4Mn 8Cr 10Mo 3Ni 20V Si≤1.8%,Mn≤1.1%,Cr≤1.8%,Mo≤0.5%,Ni≤5%,V≤0.25% 材料适用直径在φ150~200mm |
空气淬火调质钢σs/σb(%) |
σs/σb=48 3Si 4Mn 8Cr 10Mn 3Ni 20V |
6.2 求抗拉强度σb(9.8×MPa)
调质钢 | |
σb=100C-100(C-0.40)/3 100Si/10 100Mo/4 30Mn 6Ni 2W 60V 适用C≤0.9%,Si≤1.8%,Mn≤1.1%,Cr≤1.8%,Ni≤5%,V≤2% | |
普通正火及退火钢 | |
σb =20 100CM | |
热轧钢 | |
σb=27 56CM | |
锻钢 | |
σb=27 50CM | |
铸铁 | |
σb=27 48CM | |
CM | 钢的碳当量 |
CM=[1 0.5(C-0.20)]C 0.15Si [0.125 0.25(C 0.20)Mn] [1.25-0.5(C-0.20)]P 0.20Cr 0.10Ni |
机加工常用计算公式
术语和单位
Dm | 加工直径(mm) |
Vc | 切削速度(m/min) |
n | 主轴转速(r/min) |
Tc | 加工时间(min) |
Qz | 金属去除量(cm³/min) |
Im | 加工长度(mm) |
Pc | 有效功率(kW) |
Kc0.4 | 切削厚度为0.4mm时的单位切削力(N/mm²) |
fn | 每转进给量(mm/r) |
kr | 主偏角(度) |
Rmax | 表面粗糙度(um) |
rε | 刀片刀尖半径(mm) |
ap | 切削深度(mm) |
公式
切削速度(m/min) | Vc=π×Dm×n/103 |
主轴转速(r/min) | n=vc×103/(π×Dm) |
金属去除量(cm3/min) | Qz=vc×ap×fn |
所需功率(kW) | Pc=vc×ap×fn×kc0.4/60×103(0.4/fn×sin kr)0.29 |
加工时间(min) | Tc=Im/fn×n |
表面粗糙度(um) | Rmax=fn2/ rε×125 |
刀尖R补偿公式 | Z=R-R*tan(a/2) X=Z*tan(a) |
01
常用车削加工计算公式