△2023年4月2日,天龙二号遥一运载火箭发射成功。
2023年7月,蓝箭航天朱雀二号遥二运载火箭发射取得圆满成功,摘得全球首枚成功入轨液氧甲烷火箭的桂冠。
液氧甲烷是目前全球商业航天企业公认的未来低成本商业火箭的主流推进剂,“星舰”使用的也是液氧甲烷发动机。
△2023年7月12日,朱雀二号遥二运载火箭发射成功。
可以说,我国民营火箭企业已经跨过了第一步,如今正在迈向第二步,即研发一款一级可重复使用的运载火箭。
根据天兵科技的公开信息,旗下直接对标SpaceX猎鹰9号的“天龙三号”计划今年7月首飞,火箭一子级具备可自主返回、重复使用的能力。
蓝箭航天的朱雀三号计划明年首飞,它同样定位为大型可复用液氧甲烷运载火箭,一子级设计复用次数不少于20次。未来它的发射成本将下降到每公斤2万元以下,相比目前国内民营火箭每公斤约8万至11万元大幅降低。
此外,民营火箭企业在研的可重复使用火箭还有东方空间的引力二号、星河动力的智神星一号等多个型号。
那么,要跨过第二步,实现火箭回收,难度究竟有多大?
戴政打了这么一个比方,“让运载火箭从100多公里的高度落回到半个足球场大的场坪,就像在十层楼拿一支笔,将它精确地投到放在楼下的笔筒里。”
首先要解决的是发动机推力调节问题。
传统火箭发动机的推力不可调节,一旦点着,就按照额定推力工作,而可回收火箭的发动机要能够调节推力。因为火箭的一二级分离后,回收的一级需要重新点火,如果推力一成不变,无法根据火箭自身重量的变化来调整,火箭就无法实现回收。
“不变的”变成“可变的”,涉及到发动机设计理念的变化,要解决一系列关键技术问题。
接下来,还要解决控制系统和发动机调推特性的匹配。
就像开油车踩油门时会有一定延迟,控制系统下达指令后,火箭发动机的推力调节也会有一定延迟。那么,就像司机要根据汽车的特性决定踩刹车和油门的时机,从而把汽车开好,火箭的控制系统也要学会根据发动机的推力调节特性来智能控制。
如何判断这一系列技术和算法有没有达标呢?可以先来几次“模拟考”。
在一枚可重复使用火箭真正发射之前,可以先使用实验箭在低空低速状态下,对相关技术进行验证。这个过程也被形象地称为“蚱蜢跳”。
2024年1月19日,朱雀三号进行了首次“蚱蜢跳”,飞行高度约350米,着陆位置精度约2.4米。这也验证了在低空低速状态下,朱雀三号的火箭垂直回收发动机调节能力、控制系统与发动机调推性能的匹配性以及火箭垂直回收的制导控制算法。
△2024年1月19日,朱雀三号火箭完成首次大型垂直起降飞行试验。
模拟考必不可少,但也不能总是停留在模拟考,因为火箭在“蚱蜢跳”的低空低速状态下能够回收,并不能验证火箭在入轨高度和速度上也能够回收。
所以,在进行几次模拟考之后,火箭公司往往会直接开展入轨发射任务,搭载有效载荷,挣钱的同时,也在“实战”状态下,验证一级回收能力。如果一次不行,就根据实飞数据来改进技术和算法,之后再进行下一次,不断接近目标,直到成功。这也是SpaceX的技术路径。
戴政介绍,2025年6月,朱雀三号将首飞。“它会经历多少次发射才能成功把一级收回来,这不好预测,顺利的话,预计2025年底能够实现回收。”
同时,我们也要意识到,可重复使用火箭不仅是纯粹的技术问题,还涉及跨过“盈亏平衡点”的经济问题。
做重复使用火箭,根本目标是为了降低发射成本。如果火箭一级要能够回收,就意味着一级的燃料不能全部消耗掉,而要预留一部分用于在坠落过程中再次点火减速,并把火箭控制到回收场精确着陆。燃料不能完全燃烧,实力有所保留,也就意味着运载能力相比一次性使用状态一定会所有下降。
商业火箭企业靠卖运载能力赚钱,如果回收回来的火箭价值,抵不上火箭运载能力的损失,做这件事的成本就大于收益,火箭回收也就失去了意义。
所以对于可回收火箭来说,运载损失要控制在一定比例之下。规律是,火箭越大,可回收状态相比一次性使用状态,损失比例越小,越有可能跨过盈亏平衡点,甚至大幅降低成本。而要造出更大的火箭,也要攻克一系列技术难题。
“我们正在走第二步,SpaceX的第三步已经走了一半。”戴政坦言差距,但并不气馁,“虽然它在前面跑,我们在后面追赶,但我们还看得到它,而且我们跑的速度比它快,差距会不断缩小。我们的劣势是起步比较晚,但有很多方面的优势。”
03
奋起直追
我国发展商业航天有何优势?
首先是中国工业基础的优势。
△朱雀二号运载火箭总装现场
航天产业是一个大型系统工程,要用到各种各样的材料和工业技术,所以对一个国家来说,工业品类越齐全,就越利于航天业的发展。
而中国正是一个制造大国,拥有联合国产业分类中的全部工业门类。不论是材料还是工艺,应有尽有,且具有价格优势。这是众多跨国企业来中国建厂的原因,也是中国制造能一次又一次将工业品价格“打下来”的底气。手机、电动汽车、光伏,类似的情况在很多行业都在发生。植根于如此强大的工业能力,中国的商业航天也能够发展成为具有全球竞争力的行业。
此外,我国还具备人才优势。
我国非常重视理工科教育,培养了大量工程师,这些人才进入中国庞大的工业产业链条中,将持续为航天业发展助力。
同时,政策利好也在加速释放。
事实上,中国商业航天一路走来,离不开国家政策的牵引和支持。
早在2015年10月,国家发改委、财政部、国防科工局就联合印发了《国家民用空间基础设施中长期发展规划(2015年—2025年)》,提出探索国家民用空间基础设施市场化、商业化发展新机制,支持和引导社会资本参与国家民用空间基础设施建设和应用开发。
政策利好下,国内一批体制内航天人下海创业,第一批商业航天企业就此诞生。2015年也成为“商业航天元年”。
到了2019年,国防科工局、中央军委装备发展部发布《关于促进商业运载火箭规范有序发展的通知》,鼓励商业运载火箭健康有序发展,以进一步降低进入空间成本,补充和丰富进入太空的途径。
如今,经过近10年发展,业内普遍认为,商业航天已经走过了“从0到1”的“拓荒”阶段,进入拼硬实力的成长阶段。
进入新阶段,国家和地方政策也在不断加码助力,推动商业航天进入新一轮高速发展期。
2024年政府工作报告强调,积极打造生物制造、商业航天、低空经济等新增长引擎。这是“商业航天”首次写入政府工作报告。
此前在2023年底召开的中央经济工作会议上,也提到上述三个产业。会议表示,打造生物制造、商业航天、低空经济等若干战略性新兴产业。
目前,北京、上海、海南、安徽等地,纷纷出台相关政策鼓励形成商业航天产业集群。以北京为例,这里不仅成立了可重复使用火箭技术创新中心,加速星箭关键核心技术攻关,还推动建设火箭大街、卫星小镇等产业集聚区。
在北京亦庄,以荣华南路为核心,西起地泽路东至宏达中路的一片区域,被称为北京火箭大街,坐落着中国市场估值最高的几家民营火箭企业。这里正是中国商业航天蓬勃发展的生动缩影。