图2. 纳米材料扫描电镜图
纳米材料的性质与其组成和表面形貌有很大的关系,利用扫描电镜分析纳米材料,可建立起纳米材料种类、微观形貌与宏观性质之间的联系,对于改进合成条件,制备出具有优异性能的纳米 材料有很重要的指导意义。
4.1.2 高分子材料
岣扫描电镜能直接观察高分子材料如均聚物,共聚物和共混物的颗粒,块体,纤维,膜片和其产品的微观形貌以及增强材料如粉体颗粒和纤维在母体内的分散状态。
图3(a)、图3(b)是用扫描电镜(四川大学高分子学院吴桐教授提供)观测的高分子滤膜上晶片结构与孔洞分布。
扫描电镜(SEM)也可以观察到高分子材料老化,疲劳,拉伸以及扭转过程中断口断裂与扩散过程,从而有助于对其断裂原因,模式与机制进行分析。
图3. 高分子滤膜表面扫描电镜图
4.1.3 金属材料
1)扫描电镜可对金属材料的微观组织(如马氏体,奥氏体,珠光体,铁素体等)进行显微结构及立体形态的分析。如图 4(a)所示,为利用扫描电镜观察金属陶瓷表面的星环结构。
图4. 金属材料扫描电镜图
2)扫描电镜可以分析金属材料表面磨损,腐蚀和形变(例如多晶位错与滑移)情况; 观察金属材料的断口形貌,揭示其断裂机理(解理断裂,准解理断裂,韧窝断裂,沿晶断裂,疲劳断裂); 钢铁产品质量与缺陷分析(例如气泡、显微裂纹、显微缩孔等)。 图4(b)是用扫描电镜观察不锈钢断口韧窝结构(由四川大学制造学院唐俊提供)。 李文臣等用扫描电镜分析了三种WC晶粒度硬质合金表层和无梯度合金芯部的微观形貌、硬质合金非梯度合金芯部和硬质合金梯度表层断口形貌,将XRD与硬度计相结合,研究WC粒度变化对梯度硬质合金组织与性能的影响,并探讨不同WC粒度下梯度硬质合金断裂模式。
3)扫描电镜与能谱相结合可确定金属与合金各元素偏析情况,观察金属间化合物相,碳化物相,氮化物相和铌化物相,并进行成分识别;钢铁组织晶界上夹杂物或者第二相的观察与成分识别;零部件失效分析(例如畸变失效、断裂失效、磨损失效与腐蚀失效),并可识别失效零件表面析出物与腐蚀产物。 另外,针对抛光金属样品采用扫描电镜(SEM)和EBSD相结合的方法可以进一步分析其晶体结构。
4.1.4 陶瓷材料
扫描电镜可对陶瓷材料的原料,成品的显微结构及缺陷等进行分析,观察陶瓷材料中的晶相,晶体大小,杂质,气孔及孔隙分布情况,晶粒的取向以及晶粒的均匀度等情况。如图5(a)和图5(b)所示,分别为烧结后的YAG 陶瓷和生物陶瓷的扫描电镜图。利用该图可对陶瓷表面的晶粒尺度进行统计,观察晶粒均匀程度以及气孔分布情况。
图5. 陶器材料扫描电镜图
4.1.5 生物材料
扫描电镜可用于观察生物活性钛材料和生物陶瓷材料以及这些材料经过特殊处理后的表面形貌以及羟基磷灰石或细胞在这些材料表面的生长情况。
此外,扫描电镜还能用于观察水凝胶的孔洞结构,胶原的纤维结构,人工骨的孔分布情况以及磁性生物显影材料的尺度及包覆情况等,为改善合成工艺,制备性能优异的生物材料提供了依据。如图6所示,显示的是钛片经不同方法处理后在表面生长羟基磷灰石的情况。