运算放大器的各种原理图分析,运算放大器内部原理

首页 > 科技 > 作者:YD1662024-05-03 10:25:11

图4: 电压跟随器

电子设备中最常用的运算放大器是电压放大器,它可以增加输出电压的幅度。反相配置和同相配置是两种最常见的放大器配置。这两种拓扑都为闭环,这意味着输出端有反馈返回到输入端子,因此电压增益由两个电阻的比率设定。

反相运算放大器

在反相运算放大器中,正输入端通常接地,负输入端子被强制等于正输入端。其输入电流由VIN / R1之比决定 (见图5)

运算放大器的各种原理图分析,运算放大器内部原理(5)

图5: 反相运算放大器

在这种配置中,相同的电流通过R2流至输出。理想情况下,由于其高ZIN,电流不会流入运算放大器的负端子。通过R2流经负端子的电流产生相对于VIN的反相电压极性。 这就是为什么这种运算放大器被称为反相配置的原因。请注意,运算放大器的输出只能在其正电源和负电源之间摆动,因此要产生负输出电压,就需要一个具有负电源轨的运算放大器。 VOUT可用 公式(3)来计算:

VOUT=−(R2R1)xVINVOUT=−(R2R1)xVIN

同相运算放大器

在同相放大器电路中,来自电源的输入信号连接到同相( )端子(请参见图6)

运算放大器的各种原理图分析,运算放大器内部原理(6)

图6: 同相运算放大器

运算放大器迫使反相(-)端子电压等于输入电压,从而产生流经反馈电阻的电流。输出电压始终与输入电压同相,这就是为什么将此拓扑称为同相的原因。请注意,对于同相放大器,电压增益始终大于1,而对于反相配置,则并非总是如此。 VOUT可用 公式(4)来计算::

V_{OUT} = \left(1 \frac {R_1}\right) x V_{IN}V_{OUT} = \left(1 \frac {R_1}\right) x V_{IN}

电压比较器

运算放大器电压比较器可以比较电压输入,并将输出驱动到输入较高的电源轨上。由于没有反馈,这种配置被认为是开环操作。电压比较器的优势是运行速度比上述闭环拓扑快很多(见图7)

运算放大器的各种原理图分析,运算放大器内部原理(7)

图7: 电压比较器

如何选择适合应用的运算放大器

以下内容介绍如何选择运算放大器才能适合您的应用。

首先, 选择一个可以满足您需要的工作电压范围的运算放大器。通过查看放大器的电源电压可以获得此信息。电源电压可能为VDD( )和地(单电源),也可能放大器同时支持正电源和负电源。如果输出需要支持负电压,则需要负电源。

其次,考虑放大器的GBP。如果您的应用需要支持较高频率,或需要较高性能和较低失真,则考虑使用具有较高GBP的运算放大器。

功耗是另一个需要考虑的因素,因为某些应用可能需要低功耗操作。通常在器件的数据手册中可以找到建议的功率要求,通常列为电源电流和功耗。功耗也可以根据电源电流和电源电压的乘积来估算。通常,具有较低电源电流的运算放大器具有较低的GBP,当然电路性能也较差。

对于要求较高精度的应用,设计人员应特别注意放大器的输入失调电压,因为该电压会导致放大器的输出电压失调。

总结

运算放大器在许多模拟和电源应用中都被广泛使用。其好处在于,它很常见、文档和技术支持都很成熟,而且非常容易使用和实现。它可用于多种应用,例如电压缓冲器、创建模拟滤波器和阈值检测器。深入了解运算放大器相关关键参数和通用拓扑,可以帮助您在电路中成功应用它。

上一页12末页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.