
如果一个方程含有两个未知数,并且所含未知项的次数都为1次,那么这个整式方程就叫做二元一次方程,有无数个解,若加条件限定有有限个解。二元一次方程的一般形式:ax+by+c=0其中a、b不为零,这就是二元一次方程的定义。二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组定义:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有不少于两个方程。
二元一次方程组的解:两个二元一次方程的公共解,叫做二元一次方程组的解。
二元一次方程组的解法.
(1)代入消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中
的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代入法.
(2)加减消元法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法.